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ABSTRACT 
 

 

 

Automated defect detection in medical imaging has become the emergent 

field in several medical diagnostic applications. Automated detection of 

tumor in MRI is very crucial as it provides information about abnormal 

tissues which is necessary for planning treatment. The conventional 

method for defect detection in magnetic resonance brain images is human 

inspection. This method is impractical due to large amount of data. Hence, 

trusted and automatic classification schemes are essential to prevent the 

death rate of human. So, automated tumor detection methods are 

developed as it would save radiologist time and obtain a tested accuracy. 

The MRI brain tumor detection is complicated task due to complexity and 

variance of tumors. In this project, it is proposed with machine learning 

algorithms to overcome the drawbacks of traditional classifiers where 

tumor is detected in brain MRI using machine learning algorithms. 

Machine learning and image classifier can be used to efficiently detect 

cancer cells in brain through MRI. 
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INTRODUCTION 

Brain tumor is one of the most rigorous diseases in the medical science. An effective 

and efficient analysis is always a key concern for the radiologist in the premature phase of 

tumor growth. Histological grading, based on a stereotactic biopsy test, is the gold standard 

and the convention for detecting the grade of a brain tumor. The biopsy procedure requires the 

neurosurgeon to drill a small hole into the skull from which the tissue is collected. There are 

many risk factors involving the biopsy test, including bleeding from the tumor and brain 

causing infection, seizures, severe migraine, stroke, coma and even death. But the main 

concern with the stereotactic biopsy is that it is not 100% accurate which may result in a 

serious diagnostic error followed by a wrong clinical management of the disease. 

 

Tumor biopsy being challenging for brain tumor patients, non-invasive imaging techniques like 

Magnetic Resonance Imaging (MRI) have been extensively employed in diagnosing brain 

tumors. Therefore, development of systems for the detection and prediction of the grade of 

tumors based on MRI data has become necessary. But at first sight of the imaging modality like 

in Magnetic Resonance Imaging (MRI), the proper visualization of the tumor cells and its 

differentiation with its nearby soft tissues is somewhat difficult task which may be due to the 

presence of low illumination in imaging modalities or its large presence of data or several 

complexity and variance of tumors-like unstructured shape, viable size and unpredictable 

locations of the tumor. 

Automated defect detection in medical imaging using machine learning has become the 

emergent field in several medical diagnostic applications. Its application in the detection of 

brain tumor in MRI is very crucial as it provides information about abnormal tissues which is 

necessary for planning treatment. Studies in the recent literature have also reported that 

automatic computerized detection and diagnosis of the disease, based on medical image 

analysis, could be a good alternative as it would save radiologist time and also obtain a tested 

accuracy. Furthermore, if computer algorithms can provide robust and quantitative 

measurements of tumor depiction, these automated measurements will greatly aid in the 

clinical management of brain tumors by freeing physicians from the burden of the manual 

depiction of tumors. The machine learning based approaches like Deep ConvNets in radiology 

and other medical science fields plays an important role to diagnose the disease in much 

simpler way as never done before and hence providing a feasible alternative to surgical biopsy 

for brain tumors . In this project, we attempted at detecting and classifying the brain tumor and 

comparing the results of binary and multi class classification of brain tumor with and without 

Transfer Learning (use of pre-trained Keras models like VGG16, ResNet34 and Inception v3) 

using Convolutional Neural Network (CNN) architecture. 
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LITERATURE-REVIEW 
 

 

 

Krizhevsky et al. 2012 achieved state-of-the-art results in image classification based on 

transfer learning solutions upon training a large, deep convolutional neural network to classify 

the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 

different classes. On the test data, he achieved top-1 and top-5 error rates of 37.5% and 17.0% 

which was considerably better than the previous state-of-the-art. He also entered a variant of 

this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 

15.3%, compared to 26.2% achieved by the second-best entry. The neural network, which had 60 

million parameters and 650,000 neurons, consisted of five convolutional layers, some of which 

were followed by max-pooling layers, and three fully-connected layers with a final 1000-way 

Softmax. To make training faster, he used non-saturating neurons and a very efficient GPU 

implementation of the convolution operation. To reduce overfitting in the fully-connected layers 

he employed a recently-developed regularization method called ―dropout‖ that proved to be 

very effective. 

Simonyan & Zisserman 2014 they investigated the effect of the convolutional network depth on 

its accuracy in the large-scale image recognition setting. These findings were the basis of their 

ImageNet Challenge 2014 submission, where their team secured the first and the second 

places in the localization and classification tracks respectively. Their main contribution was a 

thorough evaluation of networks of increasing depth using architecture with very small (3×3) 

convolution filters, which shows that a significant improvement on the prior-art configurations 

can be achieved by pushing the depth to 16–19 weight layers after training smaller versions of 

VGG with less weight layers. 

Pan  & Yang 2010‘ssurvey focused on categorizing and reviewing the current progress on 

transfer learning for classification, regression and clustering problems. In this survey, they 

discussed the relationship between transfer learning and other related machine learning 

techniques such as domain adaptation, multitask learning and sample selection bias, as well 

as co-variate shift. They also explored some potential future issues in transfer learning 

research. In this survey article, they reviewed several current trends of transfer learning. 

Szegedyet al.2015 proposed a deep convolutional neural network architecture codenamed 
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Inception, which was responsible for setting the new state of the art for classification 

and detection in the ImageNet Large-Scale Visual Recognition Challenge 

2014(ILSVRC14). The main hallmark of this architecture is the improved utilization of 

the computing resources inside the network. This was achieved by a carefully crafted 

design that allows for increasing the depth and width of the network while keeping the 

computational budget constant. His results seem to yield solid evidence that 

approximating the expected optimal sparse structure by readily available dense 

building blocks is a viable method for improving neural networks for computer vision. 

He   et   al.,   2015b   introduced   the   ResNet,   which   utilizes   ―skip   connections and   

batch normalization. He presented a residual learning framework to ease the training 

of networks that are substantially deeper than those used previously. He explicitly 

reformulated the layers as learning residual functions with reference to the layer 

inputs, instead of learning unreferenced functions. He provided comprehensive 

empirical evidence showing that these residual networks are easier to optimize, and 

can gain accuracy from considerably increased depth. On the ImageNet dataset he 

evaluated residual nets with a depth of up to 152 layers—8×deeper than VGG nets but 

still having lower complexity. An ensemble of these residual nets achieves 3.57% error 

on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 

classification task. He also presented analysis on CIFAR-10 with 100 and 1000 layers. 

Ref. [22] reports the accuracy achieved by seven standard classifiers, viz. i)Adaptive 

Neuro- Fuzzy Classifier (ANFC), ii) Naive Bayes(NB), iii) Logistic Regression (LR), iv) 

Multilayer Perceptron(MLP), v) Support Vector Machine (SVM), vi) Classification and 

Regression Tree (CART), and vii) k-nearest neighbors (k-NN). The accuracy reported in 

Ref. [17] is on the BRaTS 2015 dataset (a subset of BRaTS 2017 dataset) which consists 

of 200 HGG and 54 LGG cases. 56 three-dimensional quantitative MRI features 

extracted manually from each patient MRI and used for the classification. 
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WORKING THEORY 
 

Machine Learning: 

Machine Learning (ML) is a subset of AI which is programmed to think on its own, 

perform social interaction, learn new information from the provided data and adapt as 

well as improve with experience. Although training time via Deep Learning (DL) 

methods is more than Machine Learning methods, it is compensated by higher 

accuracy in the former case. Also, DL being automatic, large domain knowledge is not 

required for obtaining desired results unlike in ML. 

 

 
Fig 1: A diagram showing the classification of Machine learning 

 

 

Brain tumor: 

In medical science, an anomalous and uncontrollable cell growth inside the brain is 

recognized as tumor. Human brain is the most receptive part of the body. It controls 

muscle movements and interpretation of sensory information like sight, sound, touch, 

taste, pain, etc. 

The human brain consists of Grey Matter (GM), White Matter (WM) and 

Cerebrospinal Fluid (CSF) and on the basis of factors like quantification of tissues, 

location of abnormalities, malfunctions & pathologies and diagnostic radiology, a 

presence of tumor is identified. A tumor in the brain can affect such sensory 

information and muscle movements or even results in more dangerous situation which 

includes death. Depending upon the place of commencing, tumor can 
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be categorized into primary tumors and secondary tumors. If the tumor is originated inside the 

skull, then the tumor is known as primary brain tumor otherwise if the tumor‘s initiation place 

is Somewhere else in the body and moved towards the brain, then such tumors are called 

secondary tumors. Brain tumor can be of the following types-glioblastoma, sarcoma, 

metastatic bronchogenic carcinoma on the basis of axial plane. While some tumors such as 

meningioma can be easily segmented, others like gliomas and glioblastomas are much more 

difficult to localize. World Health Organization (WHO) categorized gliomas into - HGG/high 

grade glioma/glioblastoma/IV stage /malignant & LGG/low grade glioma/II and III stage /benign. 

Although most of the LGG tumors have slower growth rate compared to HGG and are 

responsive to treatment, there is a subgroup of LGG tumors which if not diagnosed earlier and 

left untreated could lead to GBM. In both cases a correct treatment planning (including surgery, 

radiotherapy, and chemotherapy separately or in combination) becomes necessary, 

considering that an early and proper detection of the tumor grade can lead to a good prognosis. 

Survival time for a GBM (Glioblastoma Multiform) or HGG patient is very low i.e. in the range of 

12 to 15 months. Magnetic Resonance Imaging (MRI) has become the standard non-invasive 

technique for brain tumor diagnosis over the last few decades, due to its improved soft tissue 

contrast that does not use harmful radiations unlike other methods like CT(Computed 

Tomography), X-ray, PET (Position Emission Tomography) scans etc. The MRI image is basically 

a matrix of pixels having characteristic features. 

Since glioblastomas are infiltrative tumors, their borders are often fuzzy and hard to 

distinguish from healthy tissues. As a solution, more than one MRI modality is often employed 

e.g. T1 (spin-lattice relaxation), T1-contrasted (T1C), T2 (spin-spin relaxation), proton density 

(PD) contrast imaging, diffusion MRI (dMRI), and fluid attenuation inversion recovery (FLAIR) 

pulse sequences. T1-weighted images with intravenous contrast highlight the most vascular 

regions of the tumor (T 1C gives much more accuracy than T1.), called Enhancing tumor‘(ET), 

along with the tumor core' (TC) that does not involve peritumoral edema. T2-weighted (T2W) 

and T2W-Fluid Attenuation Inversion Recovery (FLAIR) images are used to evaluate the tumor 

and peritumoral edema together defined as the whole tumor (WT). Gliomas and glioblastomas 

are difficult to distinguish in T1, T1c, T2 and PD. They are better identified in FLAIR modalities. 

We have attempted to separate the brain tumor into following types-necrosis (1), edema (2), 

non- enhancing (malignant) (3) and enhancing (benign) (4) tumor. MRI images can be of three types 

on the basis of position from which they are taken which are Sagittal (side), Coronal (back) and Axial 

(top). We have used sagittal images in our project. 
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Process of brain tumor segmentation can be manual selection of ROI, Semi-automatic and 

fully-automatic. Popular machine learning algorithms for classification of brain tumor are 

Artificial Neural Network, Convolutional Neural Network, k-Nearest Neighbor (kNN), Decision 

Tree, Support Vector Machine (SVM), Naïve Bayes and Random Forest (RF). Here, we are using 

Convolutional Neural Network (CNN) for the detection and classification of the brain tumor. 

Basic Operation of Neural Networks: 

 

Neural Networks (NN) form the base of deep learning, a subfield of machine learning 

where the algorithms are inspired by the structure of the human brain. NN take in data, 

train themselves to recognize the patterns in this data and then predict the outputs for 

a new set of similar data. NN are made up of layers of neurons. These neurons are 

the core processing units of the network. First we have the input layer which receives 

the input; the output layer predicts our final output. In between, exist the hidden layers 

which perform most of the computations required by our network. 

Our brain tumor images are composed of 128 by 128 pixels which make up for 16,384 

pixels. Each pixel is fed as input to each neuron of the first layer. Neurons of one layer 

are connected to neurons of the next layer through channels .Each of these channels is 

assigned a numerical value known as weight‘. The inputs are multiplied to the 

corresponding weight and their sum is sent as input to the neurons in the hidden 

layer. Each of these neurons is associated with a numerical value called the bias‘which 

is then added to the input sum. This value is then passed through a threshold function 

called the activation function‘. The result of the activation function determines if the 

particular neuron will get activated or not. An activated neuron transmits data to the 

neurons of the next layer over the channels. In this manner the data is propagated 

through the network this is called forward propagation‘. In the output layer the neuron 

with the highest value fires and determines the output. The values are basically a 

probable. The predicted output is compared against the actual output to realize the 

error in prediction. The magnitude of the 
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Error gives an indication of the direction and magnitude of change to reduce the error. 

This information is then transferred backward through our network. This is known as 

back propagation‘. Now based on this information the weights are adjusted. This cycle 

of forward propagation and back propagation is iteratively performed with multiple 

inputs. This process continues until our weights are assigned such that the network 

can predict the type of tumor correctly in most of the cases. This brings our training 

process to an end. NN may take hours or even months to train but time is a reasonable 

trade-off when compared to its scope Several experiments show that after pre-

processing MRI images, neural network classification algorithm was the best more 

specifically CNN(Convolutional Neural Network) as compared to Support Vector 

Machine(SVM),Random Forest Field. 

 
 

 

 
Fig 2: A multi-layer perceptron model of neural network 
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Transfer Learning: 

A major assumption in many machine learning and data mining algorithms is that the training 

and future data must be in the same feature space and have the same distribution. However, in 

many real-world applications, this assumption may not hold. For example, we sometimes have 

a classification task in one domain of interest, but we only have sufficient training data in 

another domain of interest, where the latter data may be in a different feature space or follow 

a different data distribution. In such cases, knowledge transfer, if done successfully, would 

greatly improve the performance of learning by avoiding much expensive data labelling efforts. 

In recent years, transfer learning has emerged as a new learning framework to address this 

problem. 

Transfer learning allows neural networks using significantly less data .With transfer 

learning, we are in effect transferring the knowledge that a model has learned from a previous 

task, to our current one. The idea is that the two tasks are not totally disjoint, as such we can 

leverage whatever network parameters that model has learned through its extensive training, 

without having to do that training ourselves. Transfer learning has been consistently proven to 

boost model accuracy and reduce required training time, less data, less time, more accuracy. 

Transfer learning is classified to three different settings: inductive transfer learning, 

transductive transfer learning and unsupervised transfer learning. Most previous works 

focused on the settings. Furthermore, each of the approaches to transfer learning can be 

classified into four contexts based on ―what to transfer‖ in learning. They include the instance-

transfer approach, the feature-representation-transfer approach, the parameter transfer 

approach and the relational- knowledge-transfer approach, respectively. 

The smaller networks converged & were then used as initializations for the larger, 

deeper networks- This process is called pre-training. While making logical sense, pre-training 

is a very time consuming, tedious task, requiring an entire network to be trained before it can 

serve as an initialization for a deeper network. 

 

Activation Function: 

Sigmoid function ranges from 0 to 1 and is used to predict probability as an output in case of 

binary classification while Softmax function is used for multi-class classification. tanh 

function ranges from -1 to 1 and is considered better than sigmoid in binary classification 

using feed forward algorithm. ReLU (Rectified Linear Unit) ranges from 0 to infinity and 

Leaky ReLU 
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(Better version of ReLU) ranges- from -infinity to +infinity. ReLU stands for Rectified 

Linear Unit for a non-linear operation. The output is ƒ(x) = max(0,x).ReLU‘s purpose is 

to introduce non-linearity in our ConvNet. Since, the real world data would want our 

ConvNet to learn would be non-negative linear values. There are other nonlinear 

functions such as tanh or sigmoid that can also be used instead of ReLU. Most of the 

data scientists use ReLU since performance wise ReLU is better than the other two. 

Stride is the number of pixels that would move over the input matrix one at a time. 

 
Sometimes filter does not fit perfectly fit the input image. We have two options: 

either pad the picture with zeros (zero-padding) so that it fits or drop the part of the 

image where the filter did not fit. This is called valid padding which keeps only valid 

part of the image. 

Convolutional Neural Network: 
Classifier models can be basically divided into two categories respectively which are 

generative models based on hand- crafted features and discriminative models based on 

traditional learning such as support vector machine (SVM), Random Forest (RF) and 

Convolutional Neural Network (CNN). One difficulty with methods based on hand-crafted 

features is that they often require the computation of a large number of features in order to be 

accurate when used with many traditional machine learning techniques. This can make them 

slow to compute and expensive memory-wise. More efficient techniques employ lower 

numbers of features, using dimensionality reduction like PCA (Principle Component Analysis) 

or feature selection methods, but the reduction in the number of features is often at the cost of 

reduced accuracy. Brain tumour segmentation employ discriminative models because unlike 

generative modelling approaches, these approaches exploit little prior knowledge on the 

brain‘s anatomy and instead rely mostly on the extraction of [a large number of] low level 

image features, directly modelling the relationship between these features and the label of a 

given vowel. In our project, we have used the Convolutional Neural Network architecture for 

Brain tumor Detection and Classification. 

Convolutional neural network processes closely knitted data used for image classification, 

image processing, face detection etc. It is a specialized 3D structure with specialized NN 

analyzing RGB layers of an image .Unlike others, it analyses one image at a time 

Identifies and extracts important features and uses them to classify the image .Convolutional 
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Neural Networks (ConvNets) automatically learns mid-level and high-level 

representations or abstractions from the input training data. The main building block 

used to construct a CNN architecture is the convolutional layer. It also consists of 

several other layers, some of which are described as bellow: 

 Input Layer-It takes in the raw pixel value of input image 

 Convolutional Layer- It is the first layer to extract features from an input 

image. Convolution preserves the relationship between pixels by learning 

image features using small squares of input data. It is a mathematical 

operation that takes two inputs such as image matrix and a filter or kernel to 

generate a feature map Convolution of an image with different filters can 

perform operations such as edge detection, blur and sharpen by applying 

filters. 

 Activation Layer-It produces a single output based on the weighted sum of inputs 

 Pooling Layer-Pooling layers section would reduce the number of parameters 

when the images are too large. Spatial pooling (also called subsampling or 

down sampling) reduces the dimensionality of each map but retains important 

information. Spatial pooling can be of different types: 

o Max Pooling – taking the largest element in the feature map 

 
o Average Pooling - taking the average of elements in the feature map 

 
o Sum Pooling – taking the sum of all elements in the feature map 

 
 Fully Connected Layer-The layer we call as FC layer, we flattened our matrix 

into vector and feed it into a fully connected layer like a neural network. the 

feature map matrix will be converted as column vector (x1, x2, x3, …). With the 

fully connected layers, we combined these features together to create a model. 

For classifying input image into various classes based on training set. 

 Dropout Layer-It prevents nodes in a network from co-adapting to each other. 
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Advantages- 
 

1. It is considered as the best ml technique for image classification due to high 
accuracy. 

2. Image pre-processing required is much less compared to other algorithms. 

3. It is used over feed forward neural networks as it can be trained better in case 

of complex images to have higher accuracies. 

4. It reduces images to a form which is easier to process without losing features 

which are critical for a good prediction by applying relevant filters and 

reusability of weights 

5. It can automatically learn to perform any task just by going through the 

training data i.e. there no need for prior knowledge 

6. There is no need for specialized hand-crafted image features like that in 

case of SVM, Random Forest etc. 

Disadvantages- 

 
1. It requires a large training data. 

2. It requires appropriate model. 

3. It is time consuming. 

4. It is a tedious and exhaustive procedure. 

5. While convolutional networks have already existed for a long time, their 

success was limited due to the size of the considered network. 

 

Solution-Transfer Learning for inadequate data which will replace the last fully 

connected layer with pre-trained ConvNet with new fully connected layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3: A diagram of a model trained from scratch using CNN architecture. 
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|𝑋1⊓𝑌1| 

Evaluation Metrics: 

 True Positive (TP) is the HGG class predicted in the presence of the LGG class of the 

glioma. True Negative (TN) is the LGG class predicted in the absence of the HGG class 

of glioma. False Positive (FP) is prediction of HGG class in the absence of LGG class. 

False Negative (FN) is prediction of LGG class in the absence of HGG class. 

 Accuracy is the most intuitive performance measure. Accuracy is the amount of correctly 

Prediction made by the total number of predictions made. Accuracy = 𝑇𝑃+𝑇𝑁  

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁 

 Precision is defined as the number of true positives divided by the number of true 

Positives plus the number of false positives. Precision =   𝑇𝑃  

𝑇𝑃+𝐹𝑃 

 Recall is also known as sensitivity. It is the fraction of the total amount of relative 

Relevant instances that were actually retrieved. Recall =    𝑇𝑃  

𝑇𝑃+𝐹𝑁 

 F 1 Score is the weighted average or the harmonic mean of Precision and Recall taking 

Both metrics into account in the following equation: F1 Score = 2 x 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛   ∗ 𝑟𝑒𝑐𝑎𝑙𝑙   

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑟𝑒𝑐𝑎𝑙𝑙 

.When we have an unbalanced dataset F 1 Score favored over accuracy because it takes 

both false positives and false negatives into account. F-measures are used to balance 

the 

Ratio of false negatives using a weighting parameter (beta) it is given as F = 𝑃 ∗ 𝑅 
(1+𝛽)2

 

(𝑃+𝑅)𝛽 2 

 Other performance metrics used are: sensitivity, specificity and error rate. Sensitivity 

represents the probability of predicting actual HGG class. Specificity value defines 

prediction of LGG class. They allow us to determine potential of over- or under- 

segmentations of the tumor sub-regions. The error rate (ERR) is the amount of 

predicted class that have been incorrectly classified by a decision model. The overall 

classification is also provided by the Area under the Curve (AUC) that represents better 

classification if the area under the curve is more. All of these performances metric is 

evaluated for FLAIR sequences. 

 The DSC (dice similarity co-efficient) measures the overlap between the manual 

delineated brain tumour regions and the segmentation results of our fully automatic 

method that is. Mathematically, dice score/DSC is the number of false positives 

divided 

by the number of positives added with the number of false positives. DSC = 2𝑇𝑃  

𝐹𝑃+𝑇𝑃+𝐹𝑁 

and Dice loss = 2  

|𝑋1|+|𝑌1| 
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IMPLEMENTATION METHODOLOGY: 
 

Software Requirements: 

Python 3 - We have used Python which is a statistical mathematical programming 

language like R instead of MATLAB due to the following reasons: 

1. Python code is more compact and readable than MATLAB 

2. The python data structure is superior to MATLAB 

3. It is an open source and also provides more graphic packages and data sets 

Keras (with Tensor Flow backend 2.3.0 version) - Keras is a neural network API 

consisting of Tensor Flow, CNTk, Theano etc. 

Python packages like Numpy, Matplotlib, and Pandas for mathematical computation 

and plotting graphs, Simple ITK for reading the images which were in .mha format and 

Mahotas for feature extraction of GLCM 

Kaggle was used to obtain the online dataset. https://www.kaggle.com/navoneel/brain-
mri- images-for-brain-tumor-detection/activity 

 
GitHub and Stackoverflow was used for reference in case of programming syntax errors. 

 
OpenCV (Open Source Computer Vision) is a library of programming functions aimed at 

real time computer vision i.e. used for image processing and any operations relating 

to image like reading and writing images, modifying image quality, removing noise by 

using Gaussian Blur, performing binary thresholding on images, converting the original 

image consisting of pixel values into an array, changing the image from RGB to 

grayscale etc. It is free to use, simple to learn and supports C++, Java, C, Python. Its 

popular application lies in CamScanner or Instagram, GitHub or a web-based control 

repository. 

Google Colaboratory (open-source Jupyter Notebook interface with high GPU facility) - 

Google Colab /Colaboratory is a free Jupyter notebook environment that requires no 

setup and runs entirely on cloud. With Colab, one can write and execute code, save and 

share analyses, access powerful computing resources, all for free from browser. 

Jupyter Notebook is a powerful way to iterate and write on your Python code for data 

analysis. Rather than writing and rewriting an entire code, one can write lines of code 

and run them at a time. It is built off of iPython which 
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is an interactive way of running Python code. It allows Jupyter notebook to support 

multiple languages as well as storing the code and writing own markdown.] 

Hardware Requirements: 

Processor: Intel® Core™ i5-10th Gen CPU @ 5 

GHz Installed memory (RAM):8.00GB 

System Type: 64-bit Operating System 

 

Image Acquisition: 
 

Kaggle dataset: 

The dataset contains 2 folders: yes and no which contains 253 Brain MRI Images. The 
folder yes contains 155 Brain MRI Images that are tumorous and the folder no contains 
98 Brain MRI Images that are non-tumorous. You can find 
it[here](https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor- 
detection). 

1. 70% of the data for training. 

2. 15% of the data for validation. 

3. 15% of the data for testing.. 

 

number of training examples = 

1445 number of development 

examples = 310 number of test 

examples = 310 X_train shape: 

(1445, 240, 240, 3) 

Y_train shape: (1445, 1) 
X_val (dev) shape: (310, 240, 240, 3) 
Y_val (dev) shape: (310, 1) 
X_test shape: (310, 240, 240, 3) 
Y_test shape: (310, 1) 

 

 

 

     BRAIN TUMOR MRI IMAGES: 
 
A brain tumor is a mass or growth of abnormal cells in your brain. 
Many different types of brain tumors exist. Some brain tumors are noncancerous (benign), and 
some brain tumors are cancerous (malignant). Brain tumors can begin in your brain (primary 
brain tumors), or cancer can begin in other parts of your body and spread to your brain as 
secondary (metastatic) brain tumors. 
How quickly a brain tumor grows can vary greatly. The growth rate as well as the location of a 
brain tumor determines how it will affect the function of your nervous system. 
Brain tumor treatment options depend on the type of brain tumor you have, as well as its size 
and location. 

 

 
 

https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection


 

 
           

           
 

                            Fig 4: 1.Online Kaggle dataset (above two) 2. BRaTS MICCAI dataset below) 
 

 BRaTS MICCAI dataset: 

The Multimodal Brain Tumor Segmentation (BRaTS) MICCAI has always been focusing on the 

evaluation of state-of-the-art methods for the segmentation of brain tumors in magnetic 

resonance imaging (MRI) scans. Ample multi-institutional routine clinically-acquired 

multimodal MRI scans of glioblastoma (GBM) and lower grade glioma (LGG), with 

pathologically confirmed diagnosis and available OS, was provided as the training, 

validation and testing data for BRaTS 2015 challenge. All BRaTS multimodal scans are 

available as NIfTI files (.nii.gz) and these multimodal scans describe a) native (T1) and b) 

post-contrast T1- weighted (T1c), c) T2-weighted (T2), and d) T2 Fluid Attenuated Inversion 

Recovery (FLAIR) volumes, and were acquired with different clinical protocols and various 

scanners from multiple institutions. They described a mixture of pre- and post-operative 

scans and their ground truth labels have been annotated by the fusion of segmentation 

results from algorithms. All the imaging datasets have been segmented manually, by one to 

four raters, following the same annotation protocol, and their annotations were approved by 

experienced neuro-radiologists. Annotations comprise the whole tumor, the tumor core 

(including cystic areas), and the C- enhancing tumor core. 

 



The dataset contains 2 folders for the purpose of training and testing. The 'train' folder 

contains 2 sub-folders of HGG and LGG cases-220 patients of HGG and 27 patients of 

LGG. The test folder contains brain images of 110 Patients with HGG and LGG cases 

combined. There are 5 different MRI image modalities for each patient which are T1, T2, 

T1C, FLAIR, and OT (Ground truth of tumor Segmentation). All these image files are 

stored in .mha format and are of the size of 240x240, resolution of (1 mm^3) and skull- 

stripped. In the ground truth images, each voxel is labelled with zeros and non-zeros, 

corresponding to the normal pixel and parts of tumor cells, respectively. 

 

 

 
Data Augmentation: 
 

Data augmentation consists of Grey Scaling(RGB/BW to ranges of 

grey),Reflection(vertical/horizontal flip),Gaussian Blur(reduces image noise),Histogram 

equalization(increases global contrast),Rotation(may not preserve image 

size),Translation(moving the image along x or y axis), linear transformation such as random 

rotation (0-10 degrees), horizontal and vertical shifts, and horizontal and vertical flips. Data 

Augmentation is done to teach the network desired invariance and robustness properties, 

when only few training samples are available. 

Image Pre-Processing: 

Our pre-processing includes rescaling, noise removal to enhance the image, 

applying Binary Thresholding and morphological operations like erosion and dilation, 

contour forming (edge based methodology). In the first step of pre-processing, the 

memory space of the image is reduced by scaling the gray-level of the pixels in the 

range 0-255. We used Gaussian blur filter for noise removal as it is known to give 

better results than Median filter since the outline of brain is not segmented as tumor 

here. 

 

 
                                         Fig 5. Data Preprocessing using OpenCV      
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Segmentation: 
Brain tumor segmentation involves the process of separating the tumor tissues 

(Region of Interest – ROI) from normal brain tissues and solid brain tumor with the 

help of MRI images or other imaging modalities. Its mechanism is based on identifying 

similar type of subjects inside an image and forms a group of such by either finding the 

similarity measure between the objects and group the objects having most similarity 

or finding the dissimilarity measure among the objects and separate the most 

dissimilar objects in the space. Segmentation algorithms can be of two type which are 

bi-clusters (2 sub-parts) or multi-clustered (more than 2 sub-parts) algorithms. 

Segmentation can be done by using-Edge Detection, Region Growing, Watershed, 

Clustering via FCM, Spatial Clustering, Split and Merge Segmentation and Neural 

Network via MLP(ANN+DWT). 

In order to identify the tumor region from the brain image, Binary Thresholding can be 

used (via Region Growing method), which converts a gray scale image to binary image 

based on the selected threshold values. The problems associated with such approach 

are that binary image results in loss of texture and the threshold value comes out be 

different for different images. Hence, we are looking for a more advanced 

segmentation algorithm, the watershed algorithm by using Otsu Banalization. 

 

 

                              Fig 6: Tumor segmentation using Mask RCNN 
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Feature Extraction: 
 

Feature Extraction is the mathematical statistical procedure that extracts the quantitative 

parameter of resolution changes/abnormalities that are not visible to the naked eye. Examples 

of such features are Entropy, RMS, Smoothness, Skewness, Symmetry, Kurtosis, Mean, 

Texture, Variance, Centroid, Central Tendency, IDM (Inverse Difference Moment), and 

Correlation, Energy, Homogeneity, Dissimilarity, Contrast, Shade, Prominence, Eccentricity, 

Perimeter, Area and many more. 

Feature Extraction is identifying abnormalities. We need to extract some features from 

images as we need to do classification of the images using a classifier which needs 

these features to get trained on. We chose to extract GLCM (texture-based features). 

Gray Level Co-occurrence Matrix (GLCM) features are based on probability density 

function and frequency of occurrence of similar pixels. GLCM is a statistical method of 

examining texture that considers the spatial relationship of pixels. 

Machine Learning Training and Testing: 

Models for image classification with weights on ImageNet are 

Xception,VGG16,VGG19,ResnNet,ResNet2, ResNet 34, Inception v2, Inception v3, MobileNet, 

MobileNet v2, ,DenseNet, AlexNet, GoogleNet, NasNet etc. For the implementation of 

Transfer Learning in our project, we have chosen VGG16, ResNet34 and Inception v3 as out 

samples. 

After training the model, we need to validate and fine-tune the parameters and finally 

test the model on unknown samples where the data undergoes feature extraction on 

the basis of which the model can predict the class by matching corresponding labels. 

To achieve this, we can either split our dataset in the ratio of -60/20/20 or 70/20/10. We 

have used the former one. 

For a given training dataset, back-propagation learning may proceed in one of 

the following two basic ways: 

o Pattern/Sequential/Incremental mode where the whole sequence of forward 

and backward computation is performed resulting in weight adjustment for each 

pattern. It again starts from the first pattern till errors are minimized, within 

acceptable levels. It is done online, 
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Requires less local storage, faster method and is less likely to be trapped in local 
minima. 

o Batch mode where the weight upgradation is done after all the N training sets or 

epochs are presented. After presentation of the full set, weights are upgraded 

and then again the whole batch/set is presented iteratively till the minimum 

acceptable error is arrived at by comparing the target and actual outputs. 

Training stops when a given number of epochs elapse or when the error 

reaches an acceptable level or when the error stops improving. 

 
 

We have used this mode during our Machine Learning training by taking the value of N 

as 30. 

In supervised network, the network learns by comparing the network output with the 

correct answer. The network receives feedback about the errors by matching the 

corresponding labels and weights in different layers and adjusts its weights to 

minimize the error. It is also known as learning through teacher or Reinforced 

Learning. In unsupervised network, there is no teacher i.e. labels are not provided 

along with the data to the network. Thus, the network does not get any feedback about 

the errors. The network itself discovers the interesting categories or features in the 

input data. In many situations, the learning goal is not known in terms of correct 

answers. The only available information is in the correlation of input data or signals. 

The unsupervised networks are expected to recognize the input patterns, classify 

these on the basis of correlations and produce output signals corresponding to input 

categories. It is a type of dynamic programming that trains algorithm using a system 

of reward and punishment. Agent learns without human interaction and examples and 

only by interacting with the environment. For our purpose, we have used supervised 

network or Reinforced Learning for training our model. 

Fig 7: A diagram showing Unsupervised (left) and Supervised Learning Network (right) 
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Analysis and Conclusion 

Data Collection 

Image pre-processing 

Segmentation via binary thresholding 

Feature extraction 

Model construction 

Machine Learning training 

Tumor detection and classification 

Validation on unknown test samples 

Analysis and conclusion 

FLOWCHART FOR DESIGN AND DEVELOPMENT OF 

PROPOSED PROJECT 
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import tensorflow as tf 

from tensorflow.keras.layers import Conv2D, Input, ZeroPadding2D, BatchNormali 

zation, Activation, MaxPooling2D, Flatten, Dense 

from tensorflow.keras.models import Model, load_model 

from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import f1_score 

from sklearn.utils import shuffle 

import cv2 

import imutils 

import numpy as np 

import matplotlib.pyplot as plt 

import time 

from os import listdir 

def load_data(dir_list, image_size): 

""" 

Read images, resize and normalize them. 

Arguments: 

dir_list: list of strings representing file directories. 

Returns: 

X: A numpy array with shape = (#_examples, image_width, image_height, 

#_channels) 

y: A numpy array with shape = (#_examples, 1) 

""" 

 
# load all images in a directory 

X = [] 

y = [] 

image_width, image_height = image_size 

 
for directory in dir_list: 

for filename in listdir(directory): 

# load the image 

image = cv2.imread(directory + '\\' + filename) 

# crop the brain and ignore the unnecessary rest part of the image 

image = crop_brain_contour(image, plot=False) 

# resize image 

PYTHON PROGRAM FOR THE PROPOSED PROJECT 

Import necessary Python packages: 
 

 
 

Uploading the dataset: 
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import tensorflow as tf 

from keras.preprocessing.image import ImageDataGenerator 

import cv2 

import imutils 

import matplotlib.pyplot as plt 

from os import listdir 

import time 

def hms_string(sec_elapsed): 

h = int(sec_elapsed / (60 * 60)) 

m = int((sec_elapsed % (60 * 60)) / 60) 

s = sec_elapsed % 60 

return f"{h}:{m}:{round(s,1)}" 

def augment_data(file_dir, n_generated_samples, save_to_dir): 

""" 

Arguments: 

file_dir: A string representing the directory where images that we wan 

t to augment are found. 

 
 

Data Augmentation: 
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image = cv2.resize(image, dsize=(image_width, image_height), inter 

polation=cv2.INTER_CUBIC) 

# normalize values 

image = image / 255. 

# convert image to numpy array and append it to X 

X.append(image) 

# append a value of 1 to the target array if the image 

# is in the folder named 'yes', otherwise append 0. 

if directory[-3:] == 'yes': 

y.append([1]) 

else: 

y.append([0]) 

 
X = np.array(X) 

y = np.array(y) 

 
# Shuffle the data 

X, y = shuffle(X, y) 

 
print(f'Number of examples is: {len(X)}') 

print(f'X shape is: {X.shape}') 

print(f'y shape is: {y.shape}') 

 
return X, y 
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n_generated_samples: A string representing the number of generated sam 

ples using the given image. 

save_to_dir: A string representing the directory in which the generate 

d images will be saved. 

""" 

 
#from keras.preprocessing.image import ImageDataGenerator 

#from os import listdir 

 
data_gen = ImageDataGenerator(rotation_range=10, 

width_shift_range=0.1, 

height_shift_range=0.1, 

shear_range=0.1, 

brightness_range=(0.3, 1.0), 

horizontal_flip=True, 

vertical_flip=True, 

fill_mode='nearest' 

) 

 

 
for filename in listdir(file_dir): 

# load the image 

image = cv2.imread(file_dir + '\\' + filename) 

# reshape the image 

image = image.reshape((1,)+image.shape) 

# prefix of the names for the generated sampels. 

save_prefix = 'aug_' + filename[:-4] 

# generate 'n_generated_samples' sample images 

i=0 

for batch in data_gen.flow(x=image, batch_size=1, save_to_dir=save_to_ 

dir, 

save_prefix=save_prefix, save_forma 

t='jpg'): 

i += 1 

if i > n_generated_samples: 

break 



def augment_data(file_dir, n_generated_samples, save_to_dir): 

""" 

Arguments: 

file_dir: A string representing the directory where images that we wan 

t to augment are found. 

Splitting the dataset into TRAIN, TEST and VAL and 

feature extraction: 
 

def split_data(X, y, test_size=0.2): 

 

""" 

Splits data into training, development and test sets. 

Arguments: 

X: A numpy array with shape = (#_examples, image_width, image_height, 

#_channels) 

y: A numpy array with shape = (#_examples, 1) 

Returns: 

X_train: A numpy array with shape = (#_train_examples, image_width, im 

age_height, #_channels) 

y_train: A numpy array with shape = (#_train_examples, 1) 

X_val: A numpy array with shape = (#_val_examples, image_width, image_ 

height, #_channels) 

y_val: A numpy array with shape = (#_val_examples, 1) 

X_test: A numpy array with shape = (#_test_examples, image_width, imag 

e_height, #_channels) 

y_test: A numpy array with shape = (#_test_examples, 1) 

""" 

 

X_train, y_train, X_val, y_val, X_test, y_test = split_data(X, y, test_size=0. 

3) 

 

print ("number of training examples = " + str(X_train.shape[0])) 

print ("number of development examples = " + str(X_val.shape[0])) 

print ("number of test examples = " + str(X_test.shape[0])) 

print ("X_train shape: " + str(X_train.shape)) 

print ("Y_train shape: " + str(y_train.shape)) 

print ("X_val (dev) shape: " + str(X_val.shape)) 

print ("Y_val (dev) shape: " + str(y_val.shape)) 

print ("X_test shape: " + str(X_test.shape)) 

print ("Y_test shape: " + str(y_test.shape)) 

 

 

Image pre-processing and performing binary 
thresholding: 
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def crop_brain_contour(image, plot=False): 

 

#import imutils 

#import cv2 

 
 

 

Model construction: 
1. Load pre-trained models (with transfer learning) 
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n_generated_samples: A string representing the number of generated sam 

ples using the given image. 

save_to_dir: A string representing the directory in which the generate 

d images will be saved. 

""" 

 
#from keras.preprocessing.image import ImageDataGenerator 

#from os import listdir 

 
data_gen = ImageDataGenerator(rotation_range=10, 

width_shift_range=0.1, 

height_shift_range=0.1, 

shear_range=0.1, 

brightness_range=(0.3, 1.0), 

horizontal_flip=True, 

vertical_flip=True, 

fill_mode='nearest' 

) 

 

 
for filename in listdir(file_dir): 

# load the image 

image = cv2.imread(file_dir + '\\' + filename) 

# reshape the image 

image = image.reshape((1,)+image.shape) 

# prefix of the names for the generated sampels. 

save_prefix = 'aug_' + filename[:-4] 

# generate 'n_generated_samples' sample images 

i=0 

for batch in data_gen.flow(x=image, batch_size=1, save_to_dir=save_to_ 

dir, 

save_prefix=save_prefix, save_forma 

t='jpg'): 

i += 1 

if i > n_generated_samples: 

break 



#from matplotlib import pyplot as plt 

 

# Convert the image to grayscale, and blur it slightly 

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

gray = cv2.GaussianBlur(gray, (5, 5), 0) 

 

# Threshold the image, then perform a series of erosions + 

# dilations to remove any small regions of noise 

thresh = cv2.threshold(gray, 45, 255, cv2.THRESH_BINARY)[1] 

thresh = cv2.erode(thresh, None, iterations=2) 

thresh = cv2.dilate(thresh, None, iterations=2) 

 

# Find contours in thresholded image, then grab the largest one 

cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX 

_SIMPLE) 

cnts = imutils.grab_contours(cnts) 

c = max(cnts, key=cv2.contourArea) 

 

 

# Find the extreme points 

extLeft = tuple(c[c[:, :, 0].argmin()][0]) 

extRight = tuple(c[c[:, :, 0].argmax()][0]) 

extTop = tuple(c[c[:, :, 1].argmin()][0]) 

extBot = tuple(c[c[:, :, 1].argmax()][0]) 

 

# crop new image out of the original image using the four extreme points ( 

left, right, top, bottom) 

new_image = image[extTop[1]:extBot[1], extLeft[0]:extRight[0]] 

 

if plot: 

plt.figure() 

 

plt.subplot(1, 2, 1) 

plt.imshow(image) 

 

plt.tick_params(axis='both', which='both', 

top=False, bottom=False, left=False, right=False, 

labelbottom=False, labeltop=False, labelleft=False, la 

belright=False) 

 

plt.title('Original Image') 

 

plt.subplot(1, 2, 2) 

plt.imshow(new_image) 

 

plt.tick_params(axis='both', which='both', 
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2. Build model from scratch (without transfer learning) 
 

def build_model(input_shape): 

""" 

Arugments: 

input_shape: A tuple representing the shape of the input of the mode 

l. shape=(image_width, image_height, #_channels) 

Returns: 

model: A Model object. 

""" 

# Define the input placeholder as a tensor with shape input_shape. 

X_input = Input(input_shape) # shape=(?, 240, 240, 3) 

 

# Zero-Padding: pads the border of X_input with zeroes 

X = ZeroPadding2D((2, 2))(X_input) # shape=(?, 244, 244, 3) 

 

# CONV -> BN -> RELU Block applied to X 

X = Conv2D(32, (7, 7), strides = (1, 1), name = 'conv0')(X) 

X = BatchNormalization(axis = 3, name = 'bn0')(X) 

X = Activation('relu')(X) # shape=(?, 238, 238, 32) 

 

# MAXPOOL 

X = MaxPooling2D((4, 4), name='max_pool0')(X) # shape=(?, 59, 59, 32) 

 

# MAXPOOL 

X = MaxPooling2D((4, 4), name='max_pool1')(X) # shape=(?, 14, 14, 32) 

 

# FLATTEN X 

X = Flatten()(X) # shape=(?, 6272) 

# FULLYCONNECTED 

X = Dense(1, activation='sigmoid', name='fc')(X) # shape=(?, 1) 

 

# Create model. This creates your Keras model instance, you'll use this 

instance to train/test the model. 

model = Model(inputs = X_input, outputs = X, name='BrainDetectionModel') 
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return model 

top=False, bottom=False, left=False, right=False, 

labelbottom=False, labeltop=False, labelleft=False, la 

belright=False) 

 
plt.title('Cropped Image') 

plt.show() 

return new_image 



start_time = time.time() 

 
model.fit(x=X_train, y=y_train, batch_size=32, epochs=10, validation_data=(X_v 

al, y_val), callbacks=[tensorboard, checkpoint]) 

 
end_time = time.time() 

execution_time = (end_time - start_time) 

print(f"Elapsed time: {hms_string(execution_time)}") 

start_time = time.time() 

 
model.fit(x=X_train, y=y_train, batch_size=32, epochs=3, validation_data=(X_va 

l, y_val), callbacks=[tensorboard, checkpoint]) 

 
end_time = time.time() 

execution_time = (end_time - start_time) 

print(f"Elapsed time: {hms_string(execution_time)}") 

 
start_time = time.time() 

 
model.fit(x=X_train, y=y_train, batch_size=32, epochs=3, validation_data=(X_va 

l, y_val), callbacks=[tensorboard, checkpoint]) 

 
end_time = time.time() 

execution_time = (end_time - start_time) 

print(f"Elapsed time: {hms_string(execution_time)}") 

 
start_time = time.time() 

 
model.fit(x=X_train, y=y_train, batch_size=32, epochs=3, validation_data=(X_va 

l, y_val), callbacks=[tensorboard, checkpoint]) 

 
end_time = time.time() 

execution_time = (end_time - start_time) 

print(f"Elapsed time: {hms_string(execution_time)}") 

 
start_time = time.time() 

 
 

Machine Learning training: 
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Evaluation of model performance: 
 

print('Train: %.3f, Test: %.3f'%(train_acc,test_acc)) 

accuracy=accuracy_score(y_test, predictions) 

print('Accuracy: %f'% accuracy)) 

precision=precision_score(y_test, predictions) 

print('Precision: %f'% precision) 

recall=recall_score(y_test, predictions) 

print('Recall: %f'% recall) 

f1 = f1_score(y_test, predictions) 

print('F1 score: %f'% f1) 

kappa=cohen_kappa_score(y_test, predictions) 

print('Cohens kappa: %f'% kappa) 

auc=roc_auc_score(y_test, predictions) 

print('ROC AUC: %f'%auc) 

matrix=confusion_matrix(y_test, predictions) 

print(matrix) 

history_1= vgg16_history 

history_2=inception_v3_history 

history_3=resnet50_history 

defModelGraphTrainngSummary(history,N,model_name): 

print("Generating plots...") 

sys.stdout.flush() 

matplotlib.use("Agg") 

matplotlib.pyplot.style.use("ggplot") 

matplotlib.pyplot.figure() 

matplotlib.pyplot.plot(np.arange(0, N),history.history["loss"], label="train_loss") 

matplotlib.pyplot.plot(np.arange(0, N),history.history["val_loss"], label="val_loss") 

matplotlib.pyplot.title("Training Loss and Accuracy on Brain Tumor Classification") 

matplotlib.pyplot.xlabel("Epoch #") 

matplotlib.pyplot.ylabel("Loss/Accuracy of "+model_name) 

matplotlib.pyplot.legend(loc="lower left") 

matplotlib.pyplot.savefig("plot.png") 
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model.fit(x=X_train, y=y_train, batch_size=32, epochs=5, validation_data=(X_va 

l, y_val), callbacks=[tensorboard, checkpoint]) 

 
end_time = time.time() 

execution_time = (end_time - start_time) 

print(f"Elapsed time: {hms_string(execution_time)}") 

history = model.history.history 

for key in history.keys(): 

print(key) 



defModelGraphTrainngSummaryAcc(history,N,model_name): 

print("Generating plots...") 

sys.stdout.flush() 

matplotlib.use("Agg") 

matplotlib.pyplot.style.use("ggplot") 

matplotlib.pyplot.figure() 

matplotlib.pyplot.plot(np.arange(0, N),history.history["accuracy"], label="train_accuracy") 

matplotlib.pyplot.plot(np.arange(0, N),history.history["val_accuracy"], label="val_accuracy") 

matplotlib.pyplot.title("Training Loss and Accuracy on Brain Tumor Classification") 

matplotlib.pyplot.xlabel("Epoch #") 

matplotlib.pyplot.ylabel("Accuracy of "+model_name) 

matplotlib.pyplot.legend(loc="lower left") 

matplotlib.pyplot.savefig("plot.png") 

 

forX_modelin[{'name':'VGG-16','history':history_1,'model':vgg16}, 

{'name':'Inception_v3','history':history_2,'model':inception_v3}, 

{'name':'Resnet','history':history_3,'model':resnet34}]: 

ModelGraphTrainngSummary(X_model['history'],30,X_model['name']) 

ModelGraphTrainngSummaryAcc(X_model['history'],30,X_model['name']) 

predictions=X_model['model'].predict(X_val_prep) 

predictions=[1if x>0.5else0for x in predictions] 

accuracy=accuracy_score(y_val, predictions) 

print('Val Accuracy = %.2f'% accuracy) 

confusion_mtx=confusion_matrix(y_val, predictions) 

cm =plot_confusion_matrix(confusion_mtx, classes =list(labels.items()), normalize=False) 

 
defplot_metrics(history): 

train_loss=history['loss'] 

val_loss=history['val_loss'] 

train_acc=history['accuracy'] 

val_acc=history['val_accuracy'] 

plt.figure() 

plt.plot(train_loss, label='Training Loss') 

plt.plot(val_loss, label='Validation Loss') 

plt.title('Loss') 

plt.legend() 

plt.show() 

plt.figure() 

plt.plot(train_acc, label='Training Accuracy') 

plt.plot(val_acc, label='Validation Accuracy') 

plt.title('Accuracy') 

plt.legend() 

plt.show() 

 

plot_metrics(model.history.history) 

plt.figure() 

plt.plot(train_hist,color='r',linewidth=2,label='train') 

plt.plot(val_hist,color='g',linewidth=2,label='test') 

plt.xlabel('iterations') 

plt.legend() 

plt.show() 
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vgg16.save('2020-04-24_VGG_model.h5') 

inception_v3.save('2020-04-24_inception_v3.h5') 

resnet34.save('2020-04-24_resnet34.h5') 

 

filepath="tumor-detection-{epoch:02d}-{val_acc:.2f}.model" 

checkpoint=ModelCheckpoint(filepath, monitor='val_acc', verbose=1,save_best_only=True, 

mode='max') 

 

from mpl_toolkits.axes_grid1 importmake_axes_locatable 

defimplot(mp,ax,cmap='gray'): 

im=ax.imshow(mp.astype(np.float32),cmap=cmap) 

divider=make_axes_locatable(ax) 

cax=divider.append_axes("right", size="5%", pad=0.05) 

cbar=plt.colorbar(im,cax=cax) 

xb,yb=get_batch(X_p_test,Y_p_test,X_n_test,Y_n_test,n=Nbatch) 

yh=sess.run(yhat,{x:xb}) 

ypred=np.argmax(yh,axis=3) 

foriinrange(7): 

plt.figure() 

fig,(ax1, ax2, ax3)=plt.subplots(1,3,sharey=True,figsize=(10,3)) 

implot(xb[i,:,:,0],ax1) 

implot(yb[i,:,:],ax2,cmap='Spectral') 

implot(ypred[i,:,:],ax3,cmap='Spectral') 

plt.grid('off') 

plt.tight_layout() 

plt.savefig('images_{}.pdf'.format(i),dpi=600) 

plt.show() 
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EVALUATION OF THE PREDICTIVE MODEL 

PERFORMANCE 
 
 

CNN 
 
 

 

 
         

 Fig 8: Loss and Accuracy Vs Epoch plots of a CNN model without pre-trained Keras models like 

VGG16, ResNet 34 and Inception v3 
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                                                Fig9 : Loss and Accuracy Vs Epoch plots of VGG-16 
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                                                          Fig 9: Loss and Accuracy vs Epoch of ResNet 34 model.  
 

 

 

 
 

 

 

 

 

©RCCIIT, DEPT. OF EE Page 40 

Accuracy 

Epoch 



Segmentation using Maskrcnn 
 
 

 
 

 
 

 

                                                                 Fig 10: Tumor segmentation using Mask RCNN 
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Segmentation using OpenCv 
 

 

 

 

 

 

                                                                    Fig 11: Segmentation using OpenCV 
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Fig12: Confusion matrix plots (from top left) – VGG16, ResNet34 and Inception v3 
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Metric Vgg 16 Res- Net34 CNN 

Train accuracy 0.940 0.9873 0.8800 

Test accuracy  0.9900 0.8700 

Overall 
accuracy 

0.8608 0.9900 0.8800 

Validation 
Loss 

0.4057 0.1354 0.31940 

Test Loss 0.3583 0.80023 0.31580 

F1 score 0.8700 0.8900 0.8863 

AUC 0.8431 0.9400 0.87000 

 
 

Table 1 : Comparison of 3 pre-trained Keras models 
 

 

 

Fig13: Dice loss Vs Epoch after training with BRaTS MICCAI dataset 
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TABLE 1: PERFORMANCE ANALYSIS OF THE PROPOSED MODEL 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 14 : Original (left), Ground Truth (middle) and our network model on the BRaTS 2015 

dataset (right) 
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CONCLUSION 
 

Without pre-trained Keras model, the train accuracy is 97.5% and validation accuracy 

is 90.0%.The validation result had a best figure of 91.09% as accuracy. It is observed 

that without using pre-trained Keras model, although the training accuracy is >90%, 

the overall accuracy is low unlike where pre-trained model is used. 

Also, when we trained our dataset without Transfer learning, the computation time 

was 40 min whereas when we used Transfer Learning, the computation time was 

20min. Hence, training and computation time with pre-trained Keras model was 50% 

lesser than without. Chances over over-fitting the dataset is higher when training 

the model from scratch rather than using pre-trained Keras. Keras also provides an 

easy interface for data augmentation. Amongst the Keras models, it is seen that 

ResNet 34 has the best overall accuracy as well as F1 score. ResNet is a powerful 

backbone model that is used very frequently in many computer vision tasks. 

Precision and Recall both cannot be improved as one comes at the cost of the other 

.So, we use F1 score too. Transfer learning can only be applied if low-level features 

from Task 1(image recognition) can be helpful for Task 2(radiology diagnosis).For a 

large dataset, Dice loss is preferred over Accuracy. For small size of data, we should 

use simple models, pool data, clean up data, limit experimentation, use 

regularization/model averaging ,confidence intervals and single number evaluation 

metric. To avoid overfitting, we need to ensure we have plenty of testing and 

validation of data i.e. dataset is not generalized. This is solved by Data Augmentation. 

If the training accuracy too high, we can conclude that it the model might be over 

fitting the dataset. To avoid this, we can monitor testing accuracy, use outliers and 

noise, train longer, compare variance (=train performance-test performance). 
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FUTURE SCOPE 

Build an app-based user interface in hospitals which allows doctors to easily 

determine the impact of tumor and suggest treatment accordingly 

Since performance and complexity of ConvNets depend on the input data 

representation we can try to predict the location as well as stage of the tumor from 

Volume based 3D images. By creating three dimensional (3D) anatomical models from 

individual patients, training, planning and computer guidance during surgery is 

improved. Using Volume Net with LOPO (Leave-One-Patient-Out) scheme has proved 

to give a high training as well as validation accuracy(>95%).In LOPO test scheme, in 

each iteration, one patient is used for testing and remaining patients are used for 

training the ConvNets, this iterates for each patient. Although LOPO test scheme is 

computationally expensive, using this we can have more training data which is 

required for ConvNets training. LOPO testing is robust and most applicable to our 

application, where we get test result for each individual patient. So, if classifier 

misclassifies a patient then we can further investigate it separately. Improve testing 

accuracy and computation time by using classifier boosting techniques like using 

more number images with more data augmentation, fine-tuning hyper parameters, 

training for a longer time i.e. using more epochs, adding more appropriate layers etc.. 

Classifier boosting is done by building a model from the training data then creating a 

second model that attempts to correct the errors from the first model for faster 

prognosis. Such techniques can be used to raise the accuracy even higher and reach a 

level that will allow this tool to be a significant asset to any medical facility dealing 

with brain tumors. For more complex datasets, we can use U-Net architecture rather 

than CNN where the max pooling layers are just replaced by up sampling ones. 

Ultimately we would like to use very large and deep convolutional nets on video 

sequences where the temporal structure provides very helpful information that is 

missing or far less obvious in static images. 

Unsupervised transfer learning may attract more and more attention in the future. 
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