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1.1 Abstract 

 
Abstract—The computations and analysis of power systems are being executed for many 

years utilizing different toolbox in MATLAB environment. Special simulation software 

packages like ETAP, PSCAD, EMTP etc are also being popularly used for solving complex 

power system problems. Now a days there are various open-source software are available 

which are not only compatible but also highly effective for solution of different engineering 

problems. Among which Python is one of the most user friendly and easy to learn open-

source software package. The objective of the present work is to developed a Python based 

programming to study power system stability problems for a single machine infinite bus 

(SMIB) test case with the application of PSS and a FACTS based controller. The 

simulations outcome by Python are compared with the MATLAB based results. It has been 

revealed that Python script is equally compatible and efficient like MATLAB to handle 

power system computational problems. 

Keywords—iPython, Power Systems Stability, Power System Stabilizer(PSS), Thyristor 

Controlled Series Compensators (TCSC), 

 

1.2 Introduction 

 
The basic requirements that a programming language has to satisfy to be eligible for scientific 

studies and, in particular, for power system analysis, are the availability of efficient and easy-to-

use libraries for: 

• Basic mathematical functions (e.g., trigonometric functions and complex numbers). 

 

• Multi-dimensional arrays (e.g., element by element operations and slicing). 

 

• Sparse matrices and linear algebra (e.g., sparse complete LU factorization). 

• Eigen value analysis of non-symmetrical matrices. 

• Advanced and publishing-quality plots. 

The requirements above reduce the choice to a only a handful of programming languages. This is 

clearly captured by the software tools for power system analysis that are currently actively 

developed. 

The main object of this project is to show that the Python language is mature enough for power 

system analysis. Moreover, the paper discusses how Python can be extended by means of open-

source scientific libraries to provide a performance comparable to proprietary solutions. Specific 

contributions of the paper are: 

1) To show that the Python language is an adequate tool for power system analysis studies. 

 

2) To provide a comparison through power system simulations of the performance of  MATLAB 
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1.3 Python as a Scripting Language for Power System Analysis 

 
Python is a dynamically and safely typed language. Polymorphism, meta-programming, 

introspection and lazy evaluation are easy to implement and to use. Parallel programming, such 

as multi treading, concurrency and multiprocessing, is also possible even if with some 

limitations..Other relevant features of Python are the following. 

 

• Python is a modern language fully based on well-structured classes (unlike most scientific 

languages such as MATLAB and R), which make easy creating, maintaining and reusing 

modular object-oriented code. 

• As most recent scripting languages, Python inherits the best features and concepts of both 

system languages (such as C and FORTRAN) and structural languages (such as Haskell). 

• Libraries such NumPy and CVXOPT provide a link to legacy libraries (e.g., BLAS, LAPACK, 

UMFPACK, etc.) for manipulating multidimensional arrays, linear algebra, eigen value analysis 

and sparse matrices. As the number crunching is done by efficient libraries, the slowness of the 

Python interpreter is not a bottle-neck. 

• Thanks to graphical libraries such as Matplotlib, the ability of producing publication quality 2D 

figures in Python is as powerful as in MATLAB. 

• The huge variety of free third-party libraries available for Python, allows easily and quickly 

extending the features of an application well beyond the scope of the original project (e.g., the 

Python profiler and the multiprocessing modules). 

• Python is free and open source. Hence Python promotes the implementation and distribution of 

open projects. 

• Python syntax is relatively simple, neat, compact and elegant. Hence, Python is particularly 

adequate for education and illustrative examples. 

 
1.4 Main Objective 
 The main objective for this project is to implement python programming and MATLAB for 

computation and stability analysis in power system.  It helps to understand mitigation of small 

signal stability problem employing Power System Stabilizer and understand mitigation of small 

signal stability problem employing Thyristor Controlled Series Compensator. 
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2.1 BASIC CONCEPT OF POWER SYSTEM STABILITY 

 
Power  system  stability  may  be  broadly  defined  as  the  property  of  a  power  system  that  

enables  it  to  remain  in  a state  of  operating  equilibrium  or  it  is  desirable  for  all  elements  

in  a  power  system  to  operate  within  a  stable  range  of  values  under  normal  state  of  

equilibrium  after  being  subjected  to  a  system  disturbance  such  as  when  a  change  in load  

or  generation  occurs,  or  after  a  contingency  such  as  a  fault  and/or  outage  occurs.  Power  

system  stability  can  be  separated   into  two  main  categories,  angle  stability  or  rotor  angle  

stability  and  voltage  stability: 

 
2.1.1  ANGLE STABILITY:  angle  stability  or  rotor  angle  stability   can  be  defined  as  

the  ability  of  interconnected  synchronous  machines  of  a  power  system  to  remain  in  

synchronism.  The  stability  problem  involves  the  study  of  electro-mechanical  oscillations  

inherent  in  power  systems.  A  fundamental  factor  in  this  problem  is  the  manner  in  which  

the  power  outputs  of  synchronous  machines  vary  as  their  rotors  oscillate. 

 

2.1.2 VOLTAGE STABILITY: Voltage  stability  can  be  broadly  defined  as  the  

ability  of  a  system  to  maintain  steady  acceptable  voltages  at  all  buses  following  a  

system  contingency  or  disturbance. A  system  enters  a  demand,  or  change  in  system  

condition  causes  a  progressive  and  uncontrollable  drop  in  voltage.  The  main  factor  

causing  instability  is  the  inability  of  the  power  system  to  meet  the  demand  for  the  

reactive  power.  The  heart  of  the  problem  is  usually  the  voltage  drop  that  occurs  when  

active  power  and  reactive  power  flow  through  inductive  reactance  associated  with  the  

transmission  network.  In  this  chapter  we  will mainly  focus  on  the  first  of  these  two  main  

categories  of  power  system  stability,  angle  stability. 
 
2.2 CONCEPT OF SMALL SIGNAL STABILITY 

  

2.2.1 INTRODUCTION 

Small-signal (or small disturbance) stability is the ability of the power system to maintain 

synchronism under small disturbances such as small variations in loads and generations. 

Physically power system stability can be broadly classified into two main categories – angle 

stability or rotor angle stability and voltage stability. 

1. Steady-state/dynamic: This form of instability results from the inability to maintain 

synchronism and/or dampen out system transients and oscillations caused by small system 

changes, such as continual changes in load and/or generation. 

2. Transient: This form of instability results from the inability to maintain synchronism after 

large disturbances such as system faults and/or equipment outages. The aim of transient stability 

studies being to determine if the machines in a system will return to a steady synchronized state 

following a large disturbance. The literature of this book will focus in particular on the steady-

state/dynamic stability subcategory and on the techniques that can be used to analyze and control 

the dynamic stability of a power system following a small disturbance. 
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2.3 SWING EQUATION 
This equation bears the dynamics of oscillations of rotor of a synchronous generator. Consider a 

generating unit consisting of a three-phase synchronous generator and prime mover, as shown in 

Figure. The motion of the synchronous generator’s rotor is determined by Newton’s second law, 

which is given as  

𝐽𝛼𝑚  𝑡 = 𝑇𝑚  𝑡 − 𝑇𝑒  𝑡 = 𝑇𝑎 (t)...2.3.1 

where J is the total moment of inertia of the rotating masses (prime mover and generator) (kg 

m
2
), am is the rotor angular acceleration (rad/s

2
), Tm is the mechanical torque supplied by the prime 

mover minus the retarding torque due to mechanical losses (e.g., friction) (N m), Te is the 

electrical torque, accounting for the total three-phase power output and losses (N m), and Ta is the 

net accelerating torque (N m). The machine and electrical torques, Tm and Te, are positive for 

generator operation .The rotor angular acceleration is given by 

𝛼𝑚  𝑡 =
𝑑𝑤𝑚

𝑑𝑡
= 𝑑2∅𝑚(𝑡)/𝑑𝑡2 

 

𝜔𝑚 𝑡 =
𝑑∅𝑚

𝑑𝑡
 

 

  Speed control system Excitation system 

 Generator 

 Steam valve 
 

 Steam turbine  

 

Generating unit 

where 𝜔𝑚 is the rotor angular velocity (rad/s) and ∅𝑚  is the rotor angular position with respect to 

a stationary axis (rad).  In steady-state conditions, the mechanical torque equals the electrical 

torque and the accelerating torque is zero. There is no acceleration and the rotor speed is constant 

at the synchronous velocity. When the mechanical torque is more than the electrical torque, then 

the acceleration torque is positive and the speed of the rotor increases. When the mechanical 

torque is less than the electrical torque, then the acceleration torque is negative and the speed of 

the rotor decreases. Since we are interested in the rotor speed relative to the synchronous speed, 

it is convenient to measure the rotor angular position with respect to a synchronously rotating 

axis instead of a stationary one. We therefore define 

∅𝑚 𝑡 = 𝜔𝑚𝑠𝑦𝑛 𝑡 + 𝛿𝑚(𝑡) 
where 𝜔𝑚𝑠𝑦𝑛 is the synchronous angular velocity of the rotor (rad/s) and dm is the rotor angular 

position with respect to a synchronously rotating reference. To understand the concept of the 

synchronously rotating reference axis, consider the diagram in Figure. In this example, the rotor 
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is rotating at half the synchronous speed, 𝜔𝑚𝑠𝑦𝑛 /2, such that in the time it takes for the reference 

axis to rotate 450, the rotor only rotates 22.50and the rotor angular position with reference to the 

rotating axis changes from −450to −67.50. Using above equations in 2.3.1 we have 

𝐽𝛼𝑚 𝑡 = 𝐽
𝑑2∅𝑚  𝑡 

𝑑𝑡2
= 𝐽

𝑑2𝛿𝑚 (𝑡)

𝑑𝑡2
= 𝑇𝑚 𝑡 − 𝑇𝑒 𝑡 = 𝑇𝑎(𝑡)....2.3.2 

Being that we are analyzing a power system, we are interested in values of power more than we 

are in values of torque. It is therefore more convenient to work with expressions of power. 

Furthermore, it is convenient to consider this power in per unit rather than actual units. 

 

 
 

Power is equal to the angular velocity times the torque and per-unit power can be obtained by 

dividing by𝑆𝑟𝑎𝑡𝑒𝑑 , so that 

𝐽
𝜔𝑚  𝑑2𝛿𝑚 (𝑡)

𝑆𝑟𝑎𝑡𝑒𝑑   𝑑𝑡
2

=
𝜔𝑚𝑇𝑚 𝑡 − 𝜔𝑚𝑇𝑒(𝑡)

𝑆𝑟𝑎𝑡𝑒𝑑
=

𝑃𝑚 𝑡 − 𝑃𝑒(𝑡)

𝑆𝑟𝑎𝑡𝑒𝑑
= 𝑃𝑚𝑝𝑢  𝑡 − 𝑃𝑒𝑝𝑢 (𝑡) 

 

Pm (pu) is the mechanical power supplied by the prime mover minus mechanical losses (per 

unit), Pe (pu) is the electrical power output of generator plus electrical losses (per unit), and 

Stated is the generator volt-ampere rating.  We here define a constant value known as the 

normalized inertia constant, or “H” constant: 

H = 
 stored  kinetic  energy  at  synchronous  speed

generator  volt  ampere  rating
 

 

=

1

2
𝐽𝜔𝑚𝑠𝑦𝑛

2

𝑆𝑟𝑎𝑡𝑒𝑑
 (J/VA per units second) 

Equation becomes, 

2𝐻
𝜔𝑚 𝑡 𝑑2𝛿𝑚(𝑡)

𝜔𝑚𝑠𝑦𝑛
2 𝑑𝑡2

= 𝑃𝑚𝑝𝑢  𝑡 − 𝑃𝑒𝑝𝑢  𝑡 = 𝑃𝑎𝑝𝑢 (𝑡) 

 
Where  Pa (pu) is the accelerating power. We define per-unit rotor angular velocity as 
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𝜔𝑝𝑢  𝑡 =
𝜔𝑚 (𝑡)

𝜔𝑚𝑠𝑦𝑛
 

Equation becomes, 

2𝐻𝜔𝑝𝑢 (𝑡)

𝜔𝑚𝑠𝑦𝑛

𝑑2𝛿𝑚(𝑡)

𝑑𝑡2
= 𝑃𝑚𝑝𝑢  𝑡 − 𝑃𝑒𝑝𝑢  𝑡 = 𝑃𝑎𝑝𝑢 (𝑡) 

 
When a synchronous generator has P poles, the synchronous electrical angular velocity,𝜔𝑚𝑠𝑦𝑛  

known more correctly as the synchronous electrical radian frequency, can be related to the 

synchronous mechanical angular velocity by the following relationship: 

 

𝜔𝑠𝑦𝑛 =
𝑃

2
𝜔𝑚𝑠𝑦𝑛  

 
To understand how this relationship arises, consider that the number of mechanical radians in 

one full revolution of the rotor is 2p. If, for instance, a generator has four poles (two pairs) and 

there are 2p electrical radians between poles in a pair, then the electrical waveform will go 

through 4π electrical radians within the same revolution of the rotor. In general, the number of 

electrical radians in one revolution is the number of mechanical radians times the number of pole 

pairs (the number of poles divided by two) 

The relationship shown in Equation also holds for the electrical angular acceleration α (t), the 

electrical radian frequency 𝜔𝑟 (t), and the electrical power angle 𝛿 𝑡  

𝛼 𝑡 =
𝑃

2
𝛼𝑚(𝑡) 

 

𝜔𝑟 𝑡 =
𝑃

2
𝜔𝑚 𝑡  

 

𝛿 𝑡 =
𝑃

2
𝛿𝑚(𝑡) 

 
From equation we have, 

 

𝜔𝑝𝑢  𝑡 =
𝜔𝑚(𝑡)

𝜔𝑚𝑠𝑦𝑛
=

2
𝑃
𝜔𝑟(𝑡)

2
𝑃
𝜔𝑚𝑠𝑦𝑛

=
𝜔𝑟(𝑡)

𝜔𝑠𝑦𝑛
 

 
Therefore equation can be written in electrical terms rather mechanical ones, 

 

2𝐻

𝜔𝑠𝑦𝑛
𝜔𝑝𝑢  𝑡 

𝑑2𝛿 𝑡 

𝑑𝑡2
= 𝑃𝑚𝑝𝑢  𝑡 − 𝑃𝑒𝑝𝑢  𝑡 = 𝑃𝑎𝑝𝑢 (𝑡) 
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Equation represents the equation of motion of synchronous machine. It is commonly referred to 

as the “swing equation” because it represents swing in rotor angle δ during disturbances and it is 

the fundamental equation in determining rotor dynamics in transient stability studies. 

 

The swing equation is nonlinear because 𝑃𝑒𝑝𝑢 (t) is a nonlinear function of rotor angle δ and 

because of the 𝜔𝑝𝑢 (𝑡) term. The rotor speed, however, does not vary a great deal from the 

synchronous speed during transients, and a value of 𝜔𝑝𝑢 (𝑡)= 1.0 is often used in hand 

calculations. Defining 𝑀 =
2𝐻

𝜔𝑠𝑦𝑛
  , the equation in the preceding text becomes, 

 

𝑀
𝑑2𝛿(𝑡)

𝑑𝑡2
= 𝑇𝑚 − 𝑇𝑒  

 
It is often desirable to include a component of damping torque, not accounted for in the 

calculation of Te, separately. This is accomplished by introducing a term proportional to speed 

deviation in the preceding equation. The equation of motion considering damping torque has 

been shown later in Equation. 

. 
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SYSTEM
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3.1 HEFFRON–PHILIPS MODEL OF SMIB POWER SYSTEM 

 
The Heffron–Phillips model for small-signal oscillations in synchronous machines connected to 

an infinite bus was first presented in 1952. For small-signal stability studies of an SMIB power 

system, the linear model of Heffron–Phillips has been used for many years, providing reliable 

results [3, 4]. This section presents the small-signal model for a single machine connected to a 

large system through a transmission line (infinite bus) to analyze the local mode of oscillations in 

the range of frequency 1-3 Hz. A schematic representation of this system is shown in Figure.3.1.  

       The flux-decay model Figure. 3.2 of the equivalent circuit of the synchronous machine have 

been considered for the analysis.  

       The said model is known as the classical model of the synchronous machine. The following 

assumptions are generally made to analyze the small-signal stability problem an SMIB power 

system:  

(i) The mechanical power input remains constant during the period of transient.  

(ii)   Damping or asynchronous power is negligible.  

(iii)   Stator resistance is equal to zero.  

(iv)  The synchronous machine can be represented by a constant voltage source 

(electrically) behind the transient reactance.  

(v)  The mechanical angle of the synchronous machine rotor coincides with the electric 

phase angle of the voltage behind transient reactance. 

 

 
Fig. 3.1 
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Fig. 3.2 

(vi) No local load is assumed at the generator bus; if a local load is fed at the terminal of 

the machine, it is to be represented by constant impedance (or admittance). 

 

3.2 FUNDAMENTAL EQUATION 

 
The differential algebraic equations of the synchronous machine of the flux-decay model 

with fast exciter can be represented as follows: 

 

 Differential equations 

 
𝑑𝐸′𝑞

𝑑𝑡
=

1

𝑇 ′
𝑑0

(𝐸𝑞
′ +  𝑋𝑞 − 𝑋′

𝑑 𝐼𝑑 − 𝐸𝑓𝑑 )                 (3.1) 

 
𝑑𝛿

𝑑𝑡
= 𝜔 − 𝜔𝑎                                                               

 
𝑑𝜔

𝑑𝑡
=

𝜔𝑠

2𝐻
[𝑇𝑀 −  𝐸′

𝑞𝐼𝑞 +  𝑋𝑞 − 𝑋′
𝑑 𝐼𝑑𝐼𝑞 + 𝐷 𝜔 − 𝜔𝑠  ]       
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𝑑𝐸𝑓𝑑

𝑑𝑡
=

𝐸𝑓𝑑

𝑇𝐴
+

𝐾𝐴

𝑇𝐴
 𝑣𝑟𝑒𝑓 − 𝑣𝑡                                     (3.2) 

 

Stator Algebraic Equation: 

 
𝑉t sin 𝛿 − 𝜃 + 𝑅s𝐼𝑑 − 𝑋𝑞𝐼𝑞 = 0

𝐸𝑞
′ − 𝑉tcos(𝛿 − 𝜃) − 𝑅s𝐼𝑞 − 𝑋𝑑

′ 𝐼𝑑 = 0
 

 
As it is assumed stator resistance Rs=0, Id and Vt denote the magnitude of the generator 

terminal voltage reduced to, 

 

 
𝑋𝑞𝐼𝑞 − 𝑉tsin(𝛿 − 𝜃) = 0

𝐸𝑞
′ − 𝑉tcos(𝛿 − 𝜃) − 𝑋𝑑

′ 𝐼𝑑 = 0
 

 

Now,           (𝑉𝑑 + 𝑗𝑉𝑞)𝑒(𝛿−
𝜋

2
) = 𝑉𝑡𝑒

𝑗∅ 

Hence,     (𝑉𝑑 + 𝑗𝑉𝑞)𝑒(𝛿−
𝜋

2
) = 𝑉𝑡𝑒

𝑗∅ 

Expansion of the right hand side result we get, 

𝑉𝑑 + 𝑗𝑉𝑞 = 𝑉𝑡 sin 𝛿 − ∅ + 𝑉𝑡cos(𝛿 − ∅)  (3.3) 

Substitution of Equation we get, 

𝑋𝑞𝐼𝑞 − 𝑉𝑑 = 0 

 
𝐸𝑞

, − 𝑉𝑞 − 𝑋𝑑
, 𝐼𝑑 = 0 

Network Equation: The network equation assuming zero phase angle at the infinite bus: 

  

 𝐼𝑑 + 𝑗𝐼𝑞 e𝑗  𝛿−
𝜋
2
 =

𝑉t∠𝜃∘ − 𝑉∞∠0∘

𝑅e + 𝑗𝑋e

 𝐼𝑑 + 𝑗𝐼𝑞 e𝑗  𝛿−
𝜋
2
 =

 𝑉𝑑 + 𝑗𝑉𝑞 e𝑗  𝛿−
𝜋
2
 − 𝑉∞∠0∘

𝑅e + 𝑗𝑋e

 

 
After cross multiplication when real and imaginary parts are separated, Equation becomes: 

 

𝐼𝑑𝑅e + 𝑗𝐼𝑞𝑅e + 𝑗𝐼𝑑𝑋e − 𝐼𝑞𝑋e =  𝑉𝑑 + 𝑗𝑉𝑞 − 𝑉∞e
−𝑗 𝛿−

𝜋
2
 
 

Or 

 𝑅e𝐼𝑑 − 𝑋e𝐼𝑞 + 𝑗 𝑅e𝐼𝑞 + 𝑋e𝐼𝑑 =  𝑉𝑑 + 𝑗𝑉𝑞 −  𝑉∞cos 𝛿 −
𝜋

2
 − 𝑗𝑉∞sin 𝛿 −

𝜋

2
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 𝑅e𝐼𝑑 − 𝑋e𝐼𝑞 + 𝑗 𝑅e𝐼𝑞 + 𝑋e𝐼𝑑 =  𝑉𝑑 − 𝑉∞sin𝛿 + 𝑗 𝑉𝑞 − 𝑉∞cos𝛿 

∴ 𝑅e𝐼𝑑 − 𝑋e𝐼𝑞 = 𝑉𝑑 − 𝑉∞sin𝛿

𝑅e𝐼𝑞 + 𝑋e𝐼𝑑 = 𝑉𝑞 − 𝑉∞ cos 𝛿   

                             (3.4) 

 

3.3 Linearization Process and State-Space Model 

  

 Step I: The linearization of the stator algebraic equations gives 

𝑋𝑞Δ𝐼𝑞 − Δ𝑉𝑑 = 0

Δ𝐸𝑞
′ − Δ𝑉𝑞 − 𝑋𝑑

′ Δ𝐼𝑑 = 0
     

 

Rearranging Equations gives,     𝑋𝑞Δ𝐼𝑞 = Δ𝑉𝑑  

Δ𝑉𝑞 = −Δ𝐸𝑞
′ + 𝑋𝑑

′ Δ𝐼𝑑
 

Writing  equations in matrix form we get, 

 
Δ𝑉𝑑

Δ𝑉𝑞
 =  

0 𝑋𝑞

−𝑋𝑑
′ 0

  
Δ𝐼𝑑
Δ𝐼𝑞

 +  
0

Δ𝐸𝑞
′   

 

Step II: The linearization of the load-flow equations results in, 

 

𝑅eΔ𝐼𝑞 − 𝑋eΔ𝐼𝑑 = Δ𝑉𝑞 − 𝑉∞ cos 𝛿Δ𝛿 

 

𝑅eΔ𝐼𝑞 + 𝑋eΔ𝐼𝑑 = Δ𝑉𝑞 + 𝑉∞ sin 𝛿Δ𝛿 

 

Rearranging Equations give 

𝑅eΔ𝐼𝑞 − 𝑋eΔ𝐼𝑑 + 𝑉∞ cos 𝛿Δ𝛿 = Δ𝑉𝑞  

 

𝑅eΔ𝐼𝑞 + 𝑋eΔ𝐼𝑑 − 𝑉∞ sin 𝛿Δ𝛿 = Δ𝑉𝑞  

 

Writing Equations in matrix form gives 

 

 
Δ𝑉𝑑

Δ𝑉𝑞
 =  

𝑅e −𝑋e

𝑋e 𝑅e
  

Δ𝐼𝑑
Δ𝐼𝑞

 +  
𝑉∞cos𝛿
−𝑉∞sin𝛿

 Δ𝛿                                                              (3.5) 

 

Step III: Equating the right-hand side of Equations gives 

 

 
𝑅e −𝑋e

𝑋e 𝑅e
  

Δ𝐼𝑑
Δ𝐼𝑞

 +  
𝑉∞ cos 𝛿
−𝑉∞ sin 𝛿

 Δ𝛿 =  
0 𝑋𝑞

−𝑋𝑑
′ 0

  
Δ𝐼𝑑
Δ𝐼𝑞

 +  
0

Δ𝐸𝑞
′   
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𝑅e −𝑋e

𝑋e 𝑅e
 −  

0 𝑋𝑞

−𝑋𝑑
′ 0

   
Δ𝐼𝑑
Δ𝐼𝑞

 =  
0

Δ𝐸𝑞
′  +  

−𝑉∞cos𝛿
𝑉∞sin𝛿

 Δ𝛿

 
𝑅e − 𝑋e + 𝑋𝑞 

 𝑋e + 𝑋𝑑
′  𝑅e

  
Δ𝐼𝑑
Δ𝐼𝑞

 −  
0

Δ𝐸𝑞
′  +  

−𝑉∞cos𝛿
𝑉∞sin𝛿

 Δ𝛿                   (3.6)

 Now,  

 
𝑅e − 𝑋e + 𝑋𝑞 

 𝑋e + 𝑋𝑑
′  𝑅e

 

−1

=
1

Δe
 

𝑅e  𝑋e + 𝑋𝑞 

− 𝑋e + 𝑋𝑑
′  𝑅e

 

Δe = 𝑅e
2 +  𝑋c + 𝑋𝑞  𝑋e + 𝑋𝑑

′  

 

Solving for ∆Id and ∆Iq from Equation (3.6) results in 

 

 
Δ𝐼𝑑
Δ𝐼𝑞

 =  
0

Δ𝐸𝑞
′   

𝑅e − 𝑋e + 𝑋𝑞 

 𝑋e + 𝑋𝑑
′  𝑅e

 

−1

+  
−𝑉∞cos𝛿
𝑉∞sin𝛿

 Δ𝛿 ⋅  
𝑅e − 𝑋e + 𝑋𝑞 

 𝑋e + 𝑋𝑑
′  𝑅e

 

−1

 
Δ𝐼𝑑
Δ𝐼𝑞

 =
1

Δe
 

0
Δ𝐸𝑞

′   
𝑅e  𝑋e + 𝑋𝑞 

− 𝑋e + 𝑋𝑑
′  𝑅e

 

+
1

Δe
 
−𝑉∞cos𝛿
𝑉∞sin𝛿

 Δ𝛿  
𝑅e  𝑋e + 𝑋𝑞 

− 𝑋e + 𝑋𝑑
′  𝑅e

 

 
Δ𝐼𝑑
Δ𝐼𝑞

 =
1

Δe
 
 𝑋e + 𝑋𝑞 Δ𝐸𝑞

′

𝑅eΔ𝐸𝑞
′

 

+
1

Δe
 
−𝑅e𝑉∞cos𝛿 + 𝑉∞sin𝛿 𝑋e + 𝑋𝑞 

𝑅e𝑉∞sin𝛿 + 𝑉∞cos𝛿 𝑋e + 𝑋𝑑
′  

 Δ𝛿

 

 

 Therefore, 

 
Δ𝐼𝑑
Δ𝐼𝑞

 =
1

Δe
 
 𝑋e + 𝑋𝑞 −𝑅e𝑉∞ cos 𝛿 + 𝑉∞ sin 𝛿 𝑋e + 𝑋𝑞 

𝑅e 𝑅e𝑉∞ sin 𝛿 + 𝑉∞ cos 𝛿 𝑋e + 𝑋𝑑
′  

  
Δ𝐸𝑞

′

Δ𝛿
                               (3.7) 

 

Step IV: The linearizations of the differential equations are as follows. Here, the frequency is 

normalized throughout our study:  

 

Δ𝐸
˙

𝑞
′ = −

1

𝑇do

′
− Δ𝐸𝑞

′ −
1

𝑇do
′

 𝑋𝑑 − 𝑋𝑑
′  Δ𝐼𝑑 +

1

𝑇dc
′

Δ𝐸fd  
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Δ𝛿
˙

= 𝜔sΔ𝑣

Δ𝑣
˙

=
1

2𝐻
Δ𝑇M −

1

2𝐻
Δ𝐸𝑞

′ 𝐼𝑞 −
1

2𝐻
𝐸𝑞

′ Δ𝐼𝑞 −
 𝑋𝑞 − 𝑋𝑑

′  

2𝐻
Δ𝐼𝑑𝐼𝑞

−
 𝑋𝑞 − 𝑋𝑑

′  

2𝐻
𝐼𝑑Δ𝐼𝑞 −

𝐷𝜔s

2𝐻
Δ𝑣

𝑇AΔ𝐸
˙

fd = −Δ𝐸fd + 𝐾A Δ𝑉ref − Δ𝑉t 

 

 

Writing Equations in matrix form, the state-space model of the SMIB system without exciter is 

 
 
 
 Δ𝐸

˙

𝑞
′

Δ𝛿
˙

Δ𝑣
˙
 
 
 
 

=

 
 
 
 
 −

1

𝑇do
′

0 0

0 0 𝜔s

−
𝐼𝑞

2𝐻
0 −

𝐷𝜔s

2𝐻  
 
 
 
 

 
Δ𝐸𝑞

′

Δ𝛿
Δ𝑣

 +

 
 
 
 
 
 −

 𝑋𝑑 − 𝑋𝑑
′  

𝑇do
′

0

0 0
𝐼𝑞 𝑋𝑑

′ − 𝑋𝑞 

2𝐻

 𝑋𝑑
′ − 𝑋𝑞 

2𝐻
−

𝐸𝑞
′

2𝐻  
 
 
 
 
 

 
Δ𝐼𝑑
Δ𝐼𝑞

 

+

 
 
 
 
 

1

𝑇do
′

0

0 0

0
1

2𝐻 
 
 
 
 

 
Δ𝐸fd

Δ𝑇M
                                                                                            (3.8)

 

 

Step V: Obtain the linearized equations in terms of the K constants.  The expressions for Δ𝐼𝑑and 

Δ𝐼𝑞  obtained from Equation (3.8) are 

Δ𝐼𝑑 =
1

Δe
  𝑋e + 𝑋𝑞 Δ𝐸𝑞

′ +  −𝑅e𝑉∞cos𝛿 +  𝑋e + 𝑋𝑞 𝑉∞sin𝛿 Δ𝛿 

Δ𝐼𝑞 =
1

Δe
 𝑅eΔ𝐸𝑞

′ +  𝑅e𝑉∞sin𝛿 +  𝑋e + 𝑋𝑑
′  𝑉∞cos𝛿 Δ𝛿 

 

 

On substitution of ΔId and ΔIq in Equation, the resultant equations relating the constants K1, K2, 

K3, and K4 can be expressed as 

 

Δ𝐸
˙

𝑞
′ = −

1

𝐾3𝑇do
′ Δ𝐸𝑞

′ −
𝐾4

𝑇do
′ Δ𝛿 +

1

𝑇do
′ Δ𝐸fd  

 

Δ𝛿
˙

= 𝜔sΔ𝑣

Δ𝑣
˙

= −
𝐾2

2𝐻
Δ𝐸𝑞

′ −
𝐾1

2𝐻
Δ𝛿 −

𝐷𝜔s

2𝐻
Δ𝑣 +

1

2𝐻
Δ𝑇M  

                                                                                  (3.9) 

 
Step VI: The linearization of generator terminal voltage is as follows:  

               The magnitude of the generator terminal voltage is 
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𝑉1 =  𝑉𝑑

2
+ 𝑉𝑞

2

∴ 𝑉t
2 = 𝑉𝑑

2 + 𝑉𝑞
2
 

 

The linearization of the above Equation gives 

2𝑉tΔ𝑉t = 2𝑉𝑑Δ𝑉𝑑 + 2𝑉𝑞Δ𝑉𝑞

Δ𝑉t =
𝑉𝑑

𝑉t
Δ𝑉𝑑 +

𝑉𝑞

𝑉t
Δ𝑉𝑞

 

 

Now, substituting Equations we get, 

 
 
 
 
  

Δ𝑉𝑑

Δ𝑉𝑞
 =

1

Δe
 

0 𝑋𝑞

−𝑋𝑑
′ 0

 

 
 𝑋e + 𝑋𝑞 −𝑅e𝑉∞ cos 𝛿 + 𝑉∞ sin 𝛿 𝑋e + 𝑋𝑞 

𝑅e 𝑅e𝑉∞ sin 𝛿 + 𝑉∞ cos 𝛿 𝑋e + 𝑋𝑑
′  

  
Δ𝐸𝑞

′

Δ𝛿
 +  

0
Δ𝐸𝑞

′  

  

 

 
Δ𝑉𝑑

Δ𝑉𝑞
 =

1

Δe
 

𝑅e𝑋𝑞 𝑋𝑞 𝑅e𝑉∞ sin 𝛿 + 𝑉∞ 𝑋𝑑
′ + 𝑋e cos 𝛿 

−𝑋𝑑
′  𝑋e + 𝑋𝑞 −𝑋𝑑

′  −𝑅e𝑉∞ cos 𝛿 + 𝑉∞ 𝑋e + 𝑋𝑞 sin 𝛿 
  

Δ𝐸𝑞
′

Δ𝛿
 

+  
0

Δ𝐸𝑞
′  

Δ𝑉𝑑 =
1

Δe
 𝑅e𝑋𝑞Δ𝐸𝑞

′ + 𝑋𝑞𝑅e𝑉∞ sin 𝛿 + 𝑉∞𝑋𝑞 𝑋𝑑
′ + 𝑋e cos 𝛿Δ𝛿                                              (3.10)

 

and 

Δ𝑉𝑞 =
1

Δe
 −𝑋𝑑

′  𝑋e + 𝑋𝑞 Δ𝐸𝑞
′ +  𝑋𝑑

′ 𝑅e𝑉∞cos𝛿 − 𝑉∞𝑋𝑑
′  𝑋e + 𝑋𝑞 sin𝛿Δ𝛿 + Δ𝐸𝑞

′                 (3.11) 

Replacing ΔVd and ΔVq from Equations (3.10) and (3.11) in Equation  results in  

 

Δ𝑉t = 𝐾5Δ𝛿 + 𝐾6Δ𝐸𝑞
′  

 

3.4 Derivation of K constants: K1, K2, K3, K4, K5, and K6 

 

From Equation , the expression of Δ𝐸𝑞
′  on substitution of Δ𝐼𝑑  is 
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Δ𝐸
˙

𝑞
′ = −

1

𝑇dc
′

Δ𝐸𝑞
′ −

1

𝑇do
′

 𝑋𝑑 − 𝑋𝑑
′   

1

Δe
  𝑋e + 𝑋𝑞 Δ𝐸𝑞

′ +  −𝑅e𝑉∞cos𝛿   

   + 𝑋e + 𝑋𝑞 𝑉∞sin𝛿 Δ𝛿  +
1

𝑇do
′

Δ𝐸fd

Δ𝐸
˙

𝑞 = −
1

𝑇do
′

 1 +
 𝑋𝑑 − 𝑋𝑑

′   𝑋e + 𝑋𝑞 

Δe
 Δ𝐸q

′

−
1

𝑇do
′

𝑉∞ 𝑋𝑑 − 𝑋𝑑
′  

Δe
  𝑋e + 𝑋𝑞 sin𝛿 − 𝑅ecos𝛿 Δ𝛿 +

1

𝑇de
′

Δ𝐸fd

∴ Δ𝐸
˙

𝑞
′ = −

1

𝐾3𝑇do

′

Δ𝐸𝑞
′ −

𝐾4

𝑇do
′

Δ𝛿 +
1

𝑇do
′

Δ𝐸fd

 ere 

1

𝐾3
= 1 +

 𝑋𝑑 − 𝑋𝑑
′   𝑋𝑞 + 𝑋e 

Δe

𝐾4 =
𝑉∞ 𝑋𝑑 − 𝑋𝑑

′  

Δe
  𝑋𝑞 + 𝑋e sin𝛿 − 𝑅ecos𝛿 

 

 

Δ𝑣
˙

= −
1

2𝐻
Δ𝐸𝑞

′ 𝐼𝑞 −
 𝑋𝑞 − 𝑋𝑑

′  𝐼𝑞

2𝐻

1

Δe
  𝑋e + 𝑋𝑞 Δ𝐸𝑞

′ +  −𝑅e𝑉∞ cos 𝛿  

  + 𝑋e + 𝑋𝑞 𝑉∞ sin 𝛿 Δ𝛿 

+  
 𝑋𝑑

′ − 𝑋𝑞 

2𝐻
𝐼𝑑 −

1

2𝐻
𝐸𝑞

′  
1

Δe
 𝑅eΔ𝐸𝑞

′ +  𝑅e𝑉∞ sin 𝛿  

  + 𝑋e + 𝑋𝑑
′  𝑉∞ cos 𝛿 Δ𝛿 −

𝐷𝜔s

2𝐻
Δ𝑣 +

1

2𝐻
Δ𝑇M

 

 

Δ𝑣
˙

= −
1

2𝐻

1

Δe
 𝐼𝑞Δe − 𝐼𝑞 𝑋𝑑

′ − 𝑋𝑞  𝑋e + 𝑋𝑞 − 𝑅e𝐼𝑑 𝑋𝑑
′ − 𝑋𝑞 + 𝑅e𝐸𝑞

′  Δ𝐸𝑞
′

+
𝑉∞𝐼𝑞

2𝐻Δe
 𝑋𝑑

′ − 𝑋𝑞   𝑋e + 𝑋𝑞 sin𝛿 − 𝑅ecos𝛿 Δ𝛿

+
𝑉∞

Δe
  𝐼𝑑 𝑋𝑑

′ − 𝑋𝑞 − 𝐸𝑞
′    𝑋e + 𝑋𝑑

′  cos𝛿 + 𝑅esin𝛿  

−
𝐷𝜔s

2𝐻
Δ𝑣 +

1

2𝐻
Δ𝑇M

 

This can be written in terms of K constants as 
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Δ𝑣
˙

= −
Λ2

2𝐻
Δ𝐸𝑞

′ −
Λ1

2𝐻
Δ𝛿 −

𝐷𝜔𝑠

2𝐻
Δ𝑣 +

1

2𝐻
Δ𝑇M

 ere 

𝐾2 =
1

Δe
 𝐼𝑞Δe

  −𝐼𝑞 𝑋𝑑
′ − 𝑋𝑞  𝑋𝑞 + 𝑋e − 𝑅e 𝑋𝑑

′ − 𝑋𝑞 𝐼𝑑 + 𝑅e𝐸𝑞
′  

𝐾1 = −
1

Δe
 𝐼𝑞𝑉∞ 𝑋𝑑

′ − 𝑋𝑞   𝑋𝑞 + 𝑋e sin𝛿 − 𝑅ecos𝛿  

 +𝑉∞  𝑋𝑑
′ − 𝑋𝑞 𝐼𝑑 − 𝐸𝑞

′    𝑋𝑑
′ + 𝑋e cos𝛿 + 𝑅esin𝛿  

 

 

On substitution  

 

Δ𝑉t =
𝑉𝑑

𝑉t
 

1

Δ2
 𝑅e𝑋𝑞Δ𝐸𝑞

′ + 𝑋𝑞𝑅e𝑉∞sin𝛿 + 𝑉∞𝑋𝑞 𝑋𝑑
′ + 𝑋e cos𝛿Δ𝛿  

+
𝑉𝑞

𝑉t
 

1

Δe
 −𝑋𝑑

′  𝑋e + 𝑋𝑞 Δ𝐸𝑞
′   

 + 𝑋𝑑
′ 𝑅e𝑉∞cos𝛿 − 𝑉∞𝑋𝑑

′  𝑋e + 𝑋𝑞 sin𝛿Δ𝛿 + Δ𝐸𝑞
′  

Δ𝑉t −  
1

Δe
 
𝑉𝑑

𝑉t
𝑅e𝑋4 −

𝑉𝑑

𝑉t
𝑋𝑑

′  𝑋4 + 𝑋c  +
𝑉𝑑

𝑉t
 Δ𝐸𝑞

′

+  
1

Δe
 
𝑉𝑑

𝑉t
𝑋𝑞  𝑅e𝑉∞sin𝛿 + 𝑉∞cos𝛿 𝑋𝑑

′ + 𝑋e    

+   𝑉𝑞

𝑉t
𝑋𝑑

′  𝑅e𝑉∞cos𝛿 − 𝑉∞ 𝑋e + 𝑋𝑞 sin𝛿   Δ𝛿

 

 

Therefore, this equation can be written in terms of K constants as 

 

Δ𝑉t = 𝐾5Δ𝛿 + 𝐾6Δ𝐸𝑞
′

𝐾5 =
1

Δe
 
𝑉𝑑

𝑉t
𝑋𝑞 𝑅e𝑉∞sin𝛿 + 𝑉∞cos𝛿 𝑋𝑑

′ + 𝑋e   

 +
𝑉𝑞

𝑉t
𝑋𝑑

′  𝑅e𝑉∞cos𝛿 − 𝑉∞ 𝑋e + 𝑋𝑞 sin𝛿  

𝐾6 =
1

Δe
 
𝑉𝑑

𝑉t
𝑅e𝑋𝑞 −

𝑉𝑑

𝑉t
𝑋𝑑

′  𝑋𝑞 + 𝑋e  +
𝑉𝑑

𝑉t

 

 

Now, the overall linearized machine differential equations and the linearized exciter equation  

together can be put in a block diagram shown in Figure 3.3. In this representation, the dynamic 

characteristics of the system can be expressed in terms of the K constants. These constants (K1–

K6) and the block diagram representation were developed first by Heffron–Phillips and later by 

de Mello in to study the synchronous machine stability as affected by local low-frequency 

oscillations and its control through excitation system. 
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Fig. 3.4 

 
It is evident that the K constants are dependent on various system parameters such as system 

loading and the external network resistance (Re) and reactance (Xe). Generally, the value of the 

K constants is greater than zero (>0), but under heavy loading condition (high generator output) 

and for high value of external system reactance, K5 might be negative, contributing to negative 

damping and causing system instability. This phenomenon has been discussed in the following 

sections based on state space model. 

 

 

 

 

 

 

 

 

 

 

 

 



P a g e  | 25 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4: MITIGATION OF SMALL SIGNAL 

STABILITY USING PSS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



P a g e  | 26 

 

 It has been discussed the need of installing a power system stabilizer (PSS) in a power system in 

order to introduce additional damping to the rotor oscillations of the synchronous machine. The 

enhancement of damping in power systems by means of a PSS has been a subject of great 

attention in the past three decades. It is much more significant today when many large and 

complex power systems frequently operate close to their stability limits. In this chapter, the 

problem of small-signal stability has been investigated by applying the conventional PSS. A 

speed input single-stage PSS has been applied in the linearized model of a SMIB power system, 

and then, the application of PSS has been extended in a multimachine network. In both cases, 

investigation is carried out by studying the behaviour of the critical eigen value or the critical 

swing mode.  

 

4.1THE APPLICATION OF PSS IN A SMIB SYSTEM 

A simple single-machine infinite bus (SMIB) system has been shown in Figure 4.1. It is assumed 

that the machine is equipped with a fast exciter. In order to improve small-signal oscillations, a 

PSS is incorporated in this system 

 
Fig. 4.1 

 

4.2 Combined model of SMIB system with PSS 

 

A PSS is a lead-lag compensator, which produces a component of electric torque to damp 

generator rotor oscillations by controlling its excitation. The basic block diagram of a speed 

input single-stage PSS, which acts through excitation system, is depicted in Figure 4.2. 

Neglecting washout stage, the linearized Heffron–Phillips model of the SMIB system, including 

PSS dynamics, can be represented by the following state-space equation 
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Δ𝐸
˙

𝑞
′ = −

1

𝐾3𝑇do
′ Δ𝐸𝑞

′ −
𝐾4

𝑇do
′ Δ𝛿 +

1

𝑇do
′ Δ𝐸fd

Δ𝛿
˙

= 𝜔sΔ𝑣

Δ𝑣
˙

= −
𝐾2

2𝐻
Δ𝐸𝑞

′ −
𝐾1

2𝐻
Δ𝛿 −

𝐷𝜔s

2𝐻
Δ𝑣 +

1

2𝐻
Δ𝑇M

Δ𝐸
˙

fd = −
1

𝑇A
Δ𝐸fd −

𝐾A𝐾5

𝑇A
Δ𝛿 −

𝐾A𝐾6

𝑇A
Δ𝐸𝑞

′ +
𝐾A

𝑇A
Δ𝑉ref

 

 

Fig. 4.2 

 

Δ𝑉
˙

s = −
1

𝑇2
Δ𝑉s −

𝐾PSS 𝑇1

𝑇2

𝐾2

2𝐻
Δ𝐸𝑞

′ −
𝐾PSS 𝑇1

𝑇2

𝐾1

2𝐻
Δ𝛿

+  
𝐾PSS

𝑇2
−

𝐾PSS 𝑇1

𝑇2

𝐷𝜔s

2𝐻
 Δ𝑣 

                    (4.1) 

 

Where 𝐾2 =
𝜕𝑃𝑒

𝜕𝐸𝑞
′   and 𝐾1 =

𝜕𝑃𝑒

𝜕𝛿
 . Assuming the stator resistance Rs=0, the electric power 

𝑃𝑒 =
𝑉∞𝐸𝑞

′

𝑋𝑇
 𝑠𝑖𝑛𝛿 where 𝑋𝑇 = 𝑋𝑑

′ + 𝑋𝑐  

Here, Equation (4.1) is added to the general equations written above of the SMIB system because 

of the installation of a PSS. The system matrix (A_PSS) of this combined model has been 

presented in Equation (4.2). The system matrix without PSS can be easily obtained by excluding 

the PSS output state (Vs): 
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𝐴−𝑃𝑆𝑆 =

 
 
 
 
 
 
 
 
 
 −

1

𝐾3𝑇d0
′ −

𝐾4

𝑇do
′ 0

1

𝑇do
′ 0

0 0 𝜔s 0 0

−
𝐾2

2𝐻
−

𝐾1

2𝐻
−

𝐷𝜔s

2𝐻
0 0

−
𝐾A𝐾6

𝑇A
−

𝐾A𝐾5

𝑇A
0 −

1

𝑇A

𝐾A

𝑇A

−
𝐾2𝑇1

𝑇2
 
𝐾PSS

2𝐻
 −

𝐾1𝑇1

𝑇2
 
𝐾PSS

2H
  

𝐾PSS

𝑇2
−

𝐾PSS 𝑇1

𝑇2

𝐷𝜔s

2H
 0 −

1

𝑇2 
 
 
 
 
 
 
 
 
 

                                                                                                                                                     (4.2)

 

 
The washout filter stage is neglected here, since its objective is to offset the dc steadystate error 

and not have any effect on phase shift or gain at the oscillating frequency. The application of 

washout stage is not a critical task. Its dynamics can be included easily with suitable choice of 

the parameter TW. The value of TW is generally set within 10-20 s 

 

4.3 Results and discussion 

 Eigen value Analysis 

 

In this section, eigenvalues and the electromechanical swing modes of a SMIB system are 

computed in MATLAB from the system matrix, A_PSS, presented in Equation (4.2). The 

eigenvalues of the system without and with PSS are listed in Table 4.1. It is evident that the 

damping ratio of the electromechanical swing mode #2 (second row, third column) is small 

compared to the other mode; therefore, the behavior of this mode is more important to study the 

small-signal stability problem of this system and this mode has been referred to as the critical 

mode. When a PSS is installed in the system, the damping ratio of this critical mode #2 is 

enhanced significantly. The value of the damping ratio with PSS has been shown in the second 

row, column six of Table 4.1.  

 

Table 4.1 Eigenvalues and damping ratio without and with PSS 

 

Before applying PSS PSS 

PARAMETERS 

After applying PSS 

Eigenvalue Damping 

ratio 

Eigenvalue Damping ratio 

-2.6626±j15.136 0.1733 K_pss=1.0 -2.054±j15.3253 0.1328 

-0.05265±j7.3426 0.0072 T1=0.5s -0.04116±j7.110 0.0578 

- - T2=0.5s -10.4989 1.0 
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Time domain analysis 

 

The small-signal stability response of this system has been examined further by plotting the rotor 

angle deviation under different values of the PSS gain (KPSS) for a unit change in mechanical 

step power input with a reasonable simulation time of 500 s. Thus, it may be reasonable to 

remark that the installation of PSS in a SMIB system not only damps the rotor angle oscillations 

effectively but also enhances its performance with increasing PSS gain. 

 

 
 
The red colour graph shows the graph of system before applying PSS to system. The    blue 

colour graph shows the graph of system after applying PSS to system. 
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5 .1Thyristor Controlled Series Compensator 

 

The basic Thyristor controlled series compensator (TCSC) configuration consists of a fixed 

series capacitor bank C in parallel with a TCR as shown in Figure 5.1. This simple model utilizes 

the concept of a variable series reactance. The series reactance is adjusted through appropriate 

variation of the firing angle (α), to allow specified amount of active power flow across the series-

compensated line. 

 

 

 
Fig. 5.1 

 
The simplified TCSC equivalent circuit is shown in above figure .The transmission line current 

is assumed to be the independent input variable and is modelled as an external current source, 

line (t).  It has been assumed that a loop current is trapped in the reactor-capacitor circuit and that 



P a g e  | 32 

 

the power system can be represented by an ideal, sinusoidal current source. Under these 

assumptions, the TCSC steady-state voltage and current equations that can be obtained from the 

analysis of a parallel LC circuit with a variable inductance are shown in Figure 5.1, and the 

asymmetrical current pulses through the TCSC thyristors are shown schematically in Figure 5.2. 

However, the analysis presented in the following text may be erroneous to the extent that the line 

current deviates from a purely sinusoidal nature. The original time reference (OR) is taken to be 

the positive going zero crossing of the voltage across the TCSC inductance. Also, an auxiliary 

time reference (AR) is taken at a time when the thyristor starts to conduct. 

   The line current is 

 
Fig. 5.2  

or, in the AR plane, 

𝑖𝑙𝑖𝑛𝑒 = cos 𝜔𝑡 − 𝜎𝑎 = 𝑐𝑜𝑠𝜔𝑡𝑐𝑜𝑠𝜎𝑎 + 𝑠𝑖𝑛𝜔𝑡𝑠𝑖𝑛𝜎𝑎  

 

Applying Kirchhoff current law (KCL) to the circuit shown in Figure 5.2 

𝑖𝑙𝑖𝑛𝑒 = 𝑖𝑇𝐶𝑅 + 𝑖𝑐𝑎𝑝  

During the conduction period, the voltage across the TCSC inductive reactance and capacitive 

reactance coincides: 

𝐿
𝑑𝑖𝑇𝐶𝑅
𝑑𝑡

=
1

𝐶
 𝑖𝑐𝑎𝑝𝑑𝑡 + 𝑉𝑐𝑎𝑝

+  

 

where 𝑉𝑐𝑎𝑝
+  is the voltage across the capacitor when the thyristor turns on. Taking Laplace 

transformation of equations above, 

𝐼line  = cos 𝜎a
𝑠

𝑠2+𝜔2 + sin 𝜎a
𝜔

𝑠2+𝜔2

𝐼line  = 𝐼TCR + 𝐼cap    

𝐼cap  = 𝑠2𝐿𝐶𝐼TCR − 𝐶𝑉
cap  

+
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Solving for 𝐼TCR  

𝐼TCR = 𝜔0
2cos𝜎a

𝑠

 𝑠2 + 𝜔0
2  𝑠2 + 𝜔2 

+ 𝜔0
2𝜔sin𝜎a

1

 𝑠2 + 𝜔0
2  𝑠2 + 𝜔2 

+
𝜔0

2𝐶𝑉cap
+

𝑠2 + 𝜔0
2  

where ω
2
 = 1/LC. Expressing above equation in the time domain leads to 

𝑖TCR = 𝐴cos 𝜔𝑡 − 𝜎a − 𝐴cos𝜎acos𝜔0𝑡

−𝐵sin𝜎asin𝜔0𝑡 + 𝐷𝑉cap
+ sin𝜔0𝑡

 

 

 Where 𝐴 =
𝜔0

𝜔0
2−𝜔2

, 𝐵 =
𝜔0𝜔

𝜔0
2−𝜔2

,  and 𝐷 = 𝜔0𝐶 

 

The TCSC fundamental impedance is 

𝑍TCSC = 𝑅TCSC + 𝑗𝑋TCSC =
𝑉TCSC

𝐼line  

 

The voltage is𝑉TCSC  equal to the voltage across the TCSC capacitor and the above equation can 

be written as 

𝑍TCSC =
−𝑗𝑋C𝐼cap

𝐼line  

 

 
If the external power network is represented by an idealized current source, as seen from the 

TCSC terminals, this current source is equal to the sum of the currents flowing through the 

TCSC capacitor and inductor. The TCSC impedance can then be expressed as 

𝑍TCSC =
−𝑗𝑋C 𝐼line − 𝐼TCR  

𝐼line  
 

Substituting the expression for ITCR from above and assuming 𝐼𝑙𝑖𝑛𝑒 = 𝑙𝑐𝑜𝑠𝜔𝑡 

 

𝑍TCSC = −𝑗𝑋C +
−𝑗𝑋C

1 cos 𝜔𝑡
 
𝐴

𝜋
 2𝜎a + sin 2𝜎a   

 −
4𝐴 cos2 𝜎a

 𝜛2 − 1 
 
𝜛 tan 𝜛𝜎a − tan 𝜎a 

𝜋
  

 

 

Let  𝑈1 =
−𝑗𝑋C

1cos 𝜔𝑡
 
𝐴

𝜋
 2𝜎a + sin 2𝜎a    and 𝑈2 =

4𝐴𝑋C cos 2𝜎a

 𝜛2−1 1cos 𝜔𝑡
 
𝜛tan  𝜛𝜎a  −tan  𝜎a  

𝜋
  

 

Therefore,   

𝑍TCSC = −𝑗𝑋C + 𝑈1 + 𝑈2 

 

Using the expression for 𝐴 =
𝜔0

2

𝜔0
2−𝜔2

, 𝜔0
2 =

1

𝐿𝐶
,  and 𝜎a = 𝜋 − 𝛼 
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𝑈1 =
𝑋C

𝜋𝜔𝐶  
1

𝜔𝐶 − 𝜔𝐿 
[2(𝜋 − 𝛼) + sin(2(𝜋 − 𝛼))],   ∵ cos𝜔𝑡 max = 1 

=
𝑋C + 𝑋LC

𝜋
[2(𝜋 − 𝛼) + sin(2(𝜋 − 𝛼))]

= 𝐶1(2(𝜋 − 𝛼) + sin(2(𝜋 − 𝛼)))

where 𝐶1 =
𝑋C + 𝑋LC

𝜋
 and 𝑋LC =

𝑋C𝑋L

𝑋C − 𝑋L

 

Again, 

𝑈2 =
4𝐴𝑋Ccos2𝜎a

 𝜛2 − 1 1cos𝜔𝑡
 
𝜛tan 𝜛𝜎a − tan 𝜎a 

𝜋
 

 Replacing the expression for 𝐴 =
𝜔0

2

𝜔0
2 − 𝜔2

 and 𝜎a = 𝜋 − 𝛼 ,  

 

=
4𝑋C𝜔0

2 cos2 𝜋 − 𝛼 

 𝜔0
2 − 𝜔2  𝜛2 − 1 

 
𝜛 tan 𝜛 𝜋 − 𝛼  − tan 𝜋 − 𝛼 

𝜋
 

  ∵ cos 𝜔𝑡 max = 1, ∵ 𝜛 =
𝜔0

𝜔
, 𝜔0

2 =
1

𝐿𝐶
 

=
4𝑋LC

2 cos2 𝜋 − 𝛼 

𝜋𝑋L
 𝜛 tan 𝜛 𝜋 − 𝛼  − tan 𝜋 − 𝛼  

= 𝐶2 cos2 𝜋 − 𝛼  𝜛 tan 𝜛 𝜋 − 𝛼  − tan 𝜋 − 𝛼  

𝑋LC =
𝑋L𝑋C

 𝑋C − 𝑋L 
 and 𝐶2 =

4𝑋LC
2

𝜋𝑋L
.

 

 

Combining above equations, the TCSC fundamental impedance can be obtained, 

𝑍TCSC = 𝑗 −𝑋C + 𝐶1 2 𝜋 − 𝛼 + sin 2 𝜋 − 𝛼   

 −𝐶2 cos2 𝜋 − 𝛼  𝜛 tan 𝜛 𝜋 − 𝛼  − tan 𝜋 − 𝛼   
 

Therefore, the TCSC equivalent reactance, as a function of the TCSC firing angle (a), which can 

be expressed from above equation, is 

 

𝑍TCSC =  −𝑋C + 𝐶1 2 𝜋 − 𝛼 + sin 2 𝜋 − 𝛼   

 −𝐶2 cos2 𝜋 − 𝛼  𝜛 tan 𝜛 𝜋 − 𝛼  − tan 𝜋 − 𝛼   
 

The TCSC linearized equivalent reactance, which can then be obtained as  

Δ𝑋TCSC =  −2𝐶1 1 + cos 2𝛼  + 𝐶2 sin 2𝛼  𝜛 tan 𝜛 𝜋 − 𝛼  − tan 𝛼  

 +𝐶2  𝜛2
cos2 𝜋 − 𝛼 

cos2 𝜛 𝜋 − 𝛼  
− 1  Δ𝛼

 

 

For a typical value XC and XL at a base frequency of 50 Hz, its equivalent reactance (XTCSC) as a 

function of the firing angle (a) has been plotted in Figure  
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5.2 APPLICATION OF A TCSC CONTROLLER IN AN SMIB SYSTEM  

 

This section describes the application of a TCSC controller in an SMIB system in order to 

improve small-signal stability through series compensation. Simulation results established the 

superiority of the TCSC controller over PSS and SVC controllers. With changes in the firing 

angle of the Thyristors, the TCSC can change its apparent reactance smoothly and rapidly. 

Because of its rapid and flexible regulation ability, it can improve transient stability and dynamic 

performance and is capable of providing positive damping effect to the electromechanical 

oscillation modes of the power systems. 

 

5.3 Model of an SMIB system with a TCSC controller 

 

A simple SMIB system with TCSC controller has been shown in Figure. The small-signal model 

of the TCSC controller has been described. The state-space model of SMIB system with a TCSC 

controller can be formulated by adding the state variables Δ𝑥tesc =

 Δ𝛼    Δ𝑋TCSC  T  corresponding to the TCSC controller in the general Heffron-Phillips model of 
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SMIB system. Therefore, combined state-space model of the SMIB system with a TCSC 

controller can be represented by the following equations: 

Δ𝐸
˙

𝑞
′ = −

1

𝐾3𝑇do
′ Δ𝐸𝑞

′ −
𝐾4

𝑇d
′ Δ𝛿 +

1

𝑇dc
′ Δ𝐸fd

Δ𝛿
˙

= 𝜔sΔ𝑣

Δ𝐸
˙

fd = −
1

𝑇A
Δ𝐸fd −

𝐾A𝐾5

𝑇A
Δ𝛿 −

𝐾A𝐾6

𝑇A
Δ𝐸𝑞

′ +
𝐾A

𝑇A
Δ𝑉ref

 

 

 

 
 

 

Δ𝛼
˙

=
𝐾TCSC 𝑇1

𝑇2

𝐾2

2𝐻
Δ𝐸𝑞

′ +
𝐾TCSC 𝑇1

𝑇2

𝐾1

2𝐻
Δ𝛿

+  −
𝐾TCSC

𝑇2
+

𝐾TCSC 𝑇1

𝑇2

𝐷𝜔s

2𝐻
 Δ𝑣

+  −
1

𝑇2
+  

−𝐾TCS 𝑇1𝐾𝛼

2𝐻𝑇2
  Δ𝛼 −

𝐾TCSC 𝑇1

2𝐻𝑇2
Δ𝑇M

Δ𝑋
˙

TCSC = −
1

𝑇TCSC
Δ𝛼 −

1

𝑇TCSC
Δ𝑋TCSC

 

 

The above equations are added due to the installation of the TCSC. Here 𝐾2 =
∂𝑃e

∂𝐸𝑞
′ , 𝐾1 =

∂𝑃e

∂𝛿
,  and 𝐾𝛼 =

∂𝑃e

∂𝛼
  . The electrical power (Pe) assuming the stator resistance 𝑅s = 0 is 𝑃e =

𝐸𝑞
′ 𝑉∞

𝑋T
sin 𝛿 ,  where 𝑋T = 𝑋𝑑

′ + 𝑋eff  and 𝑋eff = 𝑋e − 𝑋TCSC  𝛼 . “𝛼” is the firing angle of the 

Thyristors. The system matrix (A_TCSC) of the corresponding model is 
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A_TCSC =

 
 
 
 
 
 
 
 
 
 
 
 −

1

𝐾3𝑇do
′ −

𝐾4

𝑇do
′ 0

1

𝑇do
′ 0 0

0 0 𝜔s 0 0 0

−
𝐾2

2𝐻
−

𝐾1

2𝐻
−

𝐷𝜔s

2𝐻

𝐾𝑧

2𝐻
0 0

−
𝐾A𝐾6

𝑇A

−
𝐾A𝐾5

𝑇A

0 −
1

𝑇A

𝐾A

𝑇A

0

𝐾2𝑇1

𝑇2

 
𝐾TCSC

2H
 

𝐾1𝑇1

𝑇2

 
𝐾TCSC

2𝐻
  −

𝐾TCSC

𝑇2

+
𝐾TCSC 𝑇1𝐷𝜔s

𝑇2

 2H 0 −
1

𝑇2

+  
−𝐾TCSC 𝑇1𝐾𝑥

2HT2

 0

0 0 0 0 −
1

𝑇TCSC

−
1

𝑇TCSC  
 
 
 
 
 
 
 
 
 
 
 

 

  

 

5.4 Eigenvalue Computation and Time Domain Analysis  

 

The system matrix of an SMIB system with a TCSC controller is simulated in Python. The eigen 

values of the system are computed without and with the TCSC and PSS. It is found that the 

damping ratio of the critical mode #2 (second row and third column) is improved satisfactorily 

with the application of the TCSC controllers, but the improvement is reasonably more with the 

application of the TCSC. The eigenvalues before and after applying TCSC are shown in a Table 

5.1 for firing angle( at resonance) 𝛼 = 140degree 

 

Table 5.1 Eigenvalues without and with TCSC 

 

Before applying TCSC After Applying TCSC 

Eigenvalue Damping 

ratio 

Eigenvalue Damping 

ratio 

-2.6626±j15.136 0.1733 -2.9411±j10.655 0.2661 

-0.05265±j7.3426 0.0072 -1.6436±j5.9836 0.2653 

- - -40.00000 1.0 
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The red colour response shows the system behaviour before applying TCSC to the system 

whereas the blue colour graph indicates the system response after applying TCSC 
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CHAPTER 6: CONCLUSION & FUTURE SCOPE 
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6.1 Conclusion 

 
In this work Python has been used for simulation of power system small signal stability problem. 

Python programming has been used to calculate eigenvalue and time domain analysis. The same 

problem has been already solved applying MATLAB and available in standard literature. 

However, application of Python is a novel concept presented in this project report. Comparing 

the result before using PSS & TCSC and after applying PSS & TCSC, it has been observed that 

the results executed in MATLAB are identically same with the results obtained in Python. So it 

is possible to conclude that the Python programming can also be used as an alternative of   

MATLAB for simulation of power system stability problems. 

 

6.2 Future Scope: 

 
For the simplicity of solution, in this project the case of single machine system has been studied. 

But this approach can be applied for the multi-machine problems also. Moreover other FACTS 

device like SVC, STATCOM can also be used too.  
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A.1 System parameters 

 

Td=5.90 

H=2.37 

TA=0.2 

DX=0.0 

Ws=314 

KA=400 

Xq=1.64 

Xd=1.70 

X_d=0.245 

Re=0.02 

Xe=0.7 

Vinf=1.0 

Rs=0.0 
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A.2 PROGAM FOR SYSTEM WITH0UT PSS   

 

import numpy as np 

from scipy import linalg,signal 

 import matplotlib.pyplot as plt 

#PARAMETERS OF THESYSTEM# 

Td=5.90 

H=2.37 

TA=0.2 

DX=0.0 

Ws=314 

KA=400 

Xq=1.64 

Xd=1.70 

X_d=0.245 

Re=0.02 

Xe=0.7 

Vinf=1.0 

Rs=0.0 

Xeff=Xe      

XT=X_d+Xeff 

THETA1=(np.pi*19.31)/180 

THETA2=(np.pi*0)/180 

Vi=1.172 

 V1=Vi*np.exp(complex(0,THETA1)) 

V2=Vinf*np.exp(complex(0,THETA2)) 

IG = (V1 - V2) / complex(Re,Xeff) 

print("V1,V2,IG=",V1,V2,IG) 

#step1# 

 Mag = abs(IG) 

 ANG = (180 * np.angle(IG)) / 3.14 

print("Mag,ANG=",Mag,ANG) 

 #step2# 

 E = abs(V1 + complex(Rs , Xq) * IG) 

 delta = (180 * np.angle(V1 + complex(Rs,Xq) * IG)) / 3.14 

print("E,delta=",E,delta) 

#step3# 

 Idq = IG * np.exp(complex(0,-((3.14 * delta / 180) - (3.14 / 2)))) 
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 Id = np.real(Idq) 

Iq = np.imag(Idq)  

Vdq = V1 * np.exp(complex(0,-((3.14 * delta / 180) - (3.14 / 2)))) 

 Vd = np.real(Vdq)  

Vq = np.imag(Vdq) 

print("Idq,Iq,Vdq,Vd,Vq=",Idq,Iq,Vdq,Vd,Vq)  

 #step4# 

 E_q = Vq + Rs * Iq + X_d * Id 

print("E_q=",E_q) 

#step5# 

 Efd = E_q + (Xd - X_d) * Id 

print("Efd=",Efd) 

  #step6# 

 Vref = Vi + Efd / KA 

 TM = E_q * Iq + (Xq - X_d) * Id * Iq 

print("Vref,TM=",Vref,TM) 

  #CALCULATION OF K-CONSTANTS#+++++++++++++++++++++ 

 DEL = Re * Re + (Xeff + Xq) * (Xeff + X_d) 

 K3_1 = 1 + (Xd - X_d) * (Xq + Xeff) / DEL 

 K3 = 1 / K3_1 

 K4 = (Vinf * (Xd - X_d) / DEL) * ((Xq + Xeff) * np.sin(3.14 * delta / 180) - Re * np.cos(3.14 * 

delta / 180)) 

 K2 = (1 / DEL) * (Iq * DEL - Iq * (X_d - Xq) * (Xq + Xeff) - Re * (X_d - Xq) * Id + Re * E_q) 

 K1 = (-1 / DEL) * ( 

            Iq * Vinf * (X_d - Xq) * ((Xq + Xeff) * np.sin(3.14 * delta / 180) - Re * np.cos(3.14 * 

delta / 180)) + Vinf * ( 

                (X_d-Xq) * Id - E_q) * ((X_d + Xeff) * np.cos(3.14 * delta / 180) + Re * np.sin(3.14 * 

delta / 180))) 

 K5 = (1 / DEL) * ( 

((Vd * Xq / Vi) * (Re * Vinf * np.sin 

 (3.14 * delta / 180) + Vinf * np.cos(3.14 * delta / 180) * (X_d + Xeff)) + (Vq / Vi) * 

 (X_d * (Re * Vinf * np.cos(3.14 * delta / 180) - Vinf * (Xq + Xeff) * np.sin(3.14 * delta / 

180))))) 

 K6 = (1 / DEL) * ((Vd * Xq * Re) / Vi - (Vq * X_d * (Xq + Xeff)) / Vi) + Vq / Vi 

 #SYSTEM MATRIX 'A' WITHOUT PSS# 

 A=[ [-1/(K3*Td), -K4/Td, 0 ,1/Td ],[ 0 ,0 ,Ws ,0] ,[(-Vinf*np.sin(3.14*delta/180))/(2*H*XT) ,(-

E_q*Vinf*np.cos(3.14*delta/180))/(2*H*XT), -DX*Ws/(2*H) ,0],[-KA*K6/TA ,-KA*K5/TA ,0 

,-1/TA ]] 

  #EIGEN VALUES OF A# 

eig_val1=linalg.eigvals(A) 
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print("eig_val1=",eig_val1) 

#INPUT MATRIX 'B' # 

B=[[0, 0],[0, 0],[1/(2*H), 0 ],[0 ,KA/TA ]] 

  #OUTPUT MATRIX 'C' # 

C=[0 ,0, 1, 0 ] 

#TRANSITION MATRIX 'D' # 

D=[0 ,0] 

 #CLOSED LOOP TRANSFER FUCTION OF THE SYSTEM EXCITER# 

[NUM1,DEN1]=signal.ss2tf(A,B,C,D) 

print(NUM1) 

T=np.arange(0,5,0.01) 

 lti=signal.lti(NUM1,DEN1) 

 t,r=signal.step(lti,0,T) 

 

 

 

A.3 PROGAM FOR SYSTEM WITH PSS 

 

#SYSTEM MATRIX 'A' WITH PSS# 

 KP= 1   #PSS gain# 

T1=0.5 #time constants of PSS# 

T2= 0.1 

A_pss =[ [-1/(K3*Td) ,-K4/Td ,0 ,1/Td ,0 ],[ 0, 0, Ws, 0 ,0 ],[(-

Vinf*np.sin(3.14*delta/180))/(2*H*XT) ,(-E_q*Vinf*np.cos(3.14*delta/180))/(2*H*XT), -

DX*Ws/(2*H), 0 ,0],[(-KA*K6)/TA, (-KA*K5)/TA ,0 ,-1/TA ,KA/TA] , 

[(-KP*T1*Vinf*np.sin(3.14*delta/180))/(2*H*T2*XT) ,(-

KP*T1*E_q*Vinf*np.cos(3.14*delta/180))/(2*H*T2*XT), (KP/T2)-(KP*T1*DX*Ws)/2*H*T2 

,0 ,(-1/T2)]] 

 #EIGEN VALUES OF A_PSS# 

eig_val2=linalg.eigvals(A_pss) 

print("eig_val2=",eig_val2) 

 #INPUT MATRIX B_PSS# 

B_pss=[[0 ,0],[0 ,0],[1/(2*H), 0],[0 ,KA/TA],[KP*T1/(2*H*T2), 0]] 

 #OUTPUT MATRIX C_PSS# 

C_pss=[0 ,0 ,1 ,0, 0 ] 

#TRANSITION MATRIX D_PSS# 

D_pss=[0, 0] 

#CLOSED LOOP TRANSFER FUCTION OF THE SYSTEM WITH PSS# 

[NUM2,DEN2]=signal.ss2tf(A_pss,B_pss,C_pss,D_pss,1) 

lti1=signal.lti(NUM2,DEN2) 

t1,r1=signal.step(lti1,0,T) 



P a g e  | 46 

 

plt.plot(T,r1,'b') 

plt.plot(T,r,'r') 

# Set the x axis label of the current axis. 

plt.ylabel('VARIATION OF ROTOR ANGLE') 

# Set the y axis label of the current axis. 

plt.xlabel('TIME') 

plt.show() 

 

 

A.4 PROGRAM TO FIND VARIATION OF TCSC WITH FIRING ANGLE 

 

import numpy as np 

from scipy import linalg,signal 

import matplotlib.pyplot as plt   

pi=3.14 

omega=2*np.pi*50 

# XL1 inductive reactance ; XC1 capacitive reactance# 

import numpy as np 

import matplotlib.pyplot as plt 

beta=[90,95,100,105,110,115,120,125,130,135,136,137,138,139,140,141,142,143,144,145,146,1

47,148,149,150,155,160,165,170,175,180] 

omega=2*np.pi*50 

XL1=2.6 

XC1=15 

L=XL1/omega 

C=1/(omega*XC1) 

omega_zero=np.sqrt(1/(L*C)) 

omega_bar=omega_zero/omega 

XL=XL1/529.02 

XC=XC1/529.02 

XLC=XC*XL/(XC-XL) 

C1=(XC+XLC)/XL*np.pi 

C2=(4*XLC*XLC)/XL*np.pi 

XTCS=[] 

for m in range(0,len(beta)): 

    XTCS.append(-XC+C1*(2*(np.pi-beta[m]*np.pi/180)+np.sin(2*(np.pi-beta[m]*np.pi/180)))-

C2*((np.cos(np.pi-beta[m]*np.pi/180))**2)*(omega_bar*np.tan(omega_bar*(np.pi-

beta[m]*np.pi/180))-np.tan(np.pi-beta[m]*np.pi/180))) 

plt.plot(beta,XTCS) 

plt.show() 
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A.5 PROGAM FOR SYSTEM WITH TCSC 

 

import numpy as np 

from scipy import linalg,signal 

 import matplotlib.pyplot as plt 

#DETERMINATION OF TCSC REACTANCE AT A PARTICULAR VALUE OF FIRING 

ANGLE 

#Resonance occured at beta=140deg 

beta_in= 150                  # initial value of firing angle 

beta=(beta_in*np.pi)/180  

print(beta) 

delt=np.pi-beta 

print(delt) 

omega=2*np.pi*50 

print(omega) 

# XL inductive reactance ; XC capacitive reactance% 

XL1=2.6; XC1=15.0;      #Assumed value % 

# XL1=1.2 ; XC1=9.0; 

L=XL1/omega  

C=1/(omega*XC1); 

omega_zero=np.sqrt(1/(L*C)); 

omega_bar=omega_zero/omega; 

XL=XL1/529.02  

XC=XC1/529.02  #Expressed in pu , where base impedance =529.02  

   XLC=XC*XL/(XC-XL) 

C_1=(XC+XLC)/np.pi 

C_2=(4*XLC*XLC)/XL*np.pi 

XTCSC=-XC+C_1*(2*(delt)+ np.sin(2*(delt)))-

C_2*(np.cos(delt))**2*(omega_bar*np.tan(omega_bar*(delt))-np.tan(delt))  

print("XTCSC=",XTCSC)   

 #CACULATION OF delta(YTCSC) 

part1= -2*C_1*(1+np.cos(2*beta))+ C_2*np.sin(2*beta)*(omega_bar*np.tan(omega_bar*(np.pi-

beta))-np.tan(beta)); 

part2= (((omega_bar)**2)*((np.cos(np.pi-beta))**2))/((np.cos(omega_bar*(np.pi-beta)))**2) ; 

dXTCSC= part1+C_2*(part2-1) 

print("dXTCSC=",dXTCSC) 

#PARAMETERS OF THESYSTEM# 

Td=5.90 
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H=2.37 

TA=0.2 

DX=0.0 

Ws=314 

KA=40 

Xq=1.64 

Xd=1.70 

X_d=0.245 

Re=0.02 

Xe=0.7 

Vinf=1.00 

Rs=0.0 

TCSC=0.025 

Xeff=Xe+XTCSC     # WITHOUT TCSC# 

XT=X_d+Xeff 

THETA1=(np.pi*19.31)/180 

THETA2=(np.pi*0)/180 

Vi=1.172 

V1=Vi*np.exp(complex(0,THETA1)) 

V2=Vinf*np.exp(complex(0,THETA2)) 

 IG = (V1 - V2) / complex(Re,Xeff) 

print("V1,V2,IG=",V1,V2,IG) 

 #step1# 

 Mag = abs(IG) 

 ANG = (180 * np.angle(IG)) / 3.14 

print("Mag,ANG=",Mag,ANG) 

  #step2# 

 E = abs(V1 + complex(Rs , Xq) * IG) 

 delta = (180 * np.angle(V1 + complex(Rs,Xq) * IG)) / 3.14 

print("E,delta=",E,delta) 

#step3# 

 Idq = IG * np.exp(complex(0,-((3.14 * delta / 180) - (3.14 / 2)))) 

 Id = np.real(Idq) 

 Iq = np.imag(Idq) 

 Vdq = V1 * np.exp(complex(0,-((3.14 * delta / 180) - (3.14 / 2)))) 

 Vd = np.real(Vdq) 

 Vq = np.imag(Vdq) 

print("Idq,Iq,Vdq,Vd,Vq=",Idq,Iq,Vdq,Vd,Vq)  

 #step4# 

 E_q = Vq + Rs * Iq + X_d * Id 
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print("E_q=",E_q) 

  #step5# 

 Efd = E_q + (Xd - X_d) * Id 

print("Efd=",Efd) 

  #step6# 

 Vref = Vi + Efd / KA 

 TM = E_q * Iq + (Xq - X_d) * Id * Iq 

print("Vref,TM=",Vref,TM) 

 #CALCULATION OF K-CONSTANTS#+++++++++++++++++++++ 

 DEL = Re * Re + (Xeff + Xq) * (Xeff + X_d) 

  

  K3_1 = 1 + (Xd - X_d) * (Xq + Xeff) / DEL 

 K3 = 1 / K3_1 

 K4 = (Vinf * (Xd - X_d) / DEL) * ((Xq + Xeff) * np.sin(3.14 * delta / 180) - Re * np.cos(3.14 * 

delta / 180)) 

 K2 = (1 / DEL) * (Iq * DEL - Iq * (X_d - Xq) * (Xq + Xeff) - Re * (X_d - Xq) * Id + Re * E_q) 

 K1 = (-1 / DEL) * ( 

            Iq * Vinf * (X_d - Xq) * ((Xq + Xeff) * np.sin(3.14 * delta / 180) - Re * np.cos(3.14 * 

delta / 180)) + Vinf * ( 

                (X_d-Xq) * Id - E_q) * ((X_d + Xeff) * np.cos(3.14 * delta / 180) + Re * np.sin(3.14 * 

delta / 180))) 

 K5 = (1 / DEL) * ( 

((Vd * Xq / Vi) * (Re * Vinf * np.sin 

 (3.14 * delta / 180) + Vinf * np.cos(3.14 * delta / 180) * (X_d + Xeff)) + (Vq / Vi) * 

 (X_d * (Re * Vinf * np.cos(3.14 * delta / 180) - Vinf * (Xq + Xeff) * np.sin(3.14 * delta / 

180))))) 

 K6 = (1 / DEL) * ((Vd * Xq * Re) / Vi - (Vq * X_d * (Xq + Xeff)) / Vi) + Vq / Vi 

 #SYSTEM MATRIX 'A' WITHOUT TCSC# 

 A=[ [-1/(K3*Td), -K4/Td, 0 ,1/Td ],[ 0 ,0 ,Ws ,0] ,[(-Vinf*np.sin(3.14*delta/180))/(2*H*XT) ,(-

E_q*Vinf*np.cos(3.14*delta/180))/(2*H*XT), -DX*Ws/(2*H) ,0],[-KA*K6/TA ,-KA*K5/TA ,0 

,-1/TA ]] 

  #EIGEN VALUES OF A# 

eig_val1=linalg.eigvals(A) 

print("eig_val1=",eig_val1) 

#INPUT MATRIX 'B' # 

B=[[0, 0],[0, 0],[1/(2*H), 0 ],[0 ,KA/TA ]] 

  #OUTPUT MATRIX 'C' # 

C=[0 ,0, 1, 0 ] 

#TRANSITION MATRIX 'D' # 

D=[0 ,0] 
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 #CLOSED LOOP TRANSFER FUCTION OF THE SYSTEM EXCITER# 

[NUM1,DEN1]=signal.ss2tf(A,B,C,D) 

print(NUM1) 

T=np.arange(0,5,0.01) 

 lti=signal.lti(NUM1,DEN1) 

 t,r=signal.step(lti,0,T) 

 # SYSTEM MATRIX 'A' WITH TCSC 

#^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

KP= 1.0;           # TCSC controller gain% 

T1=0.5 ; T2= 0.1;  # Time constants of TCSC controller 

A_tcsc=[[-1/(K3*Td) ,-K4/Td  ,0 , 1/Td ,0 ,0],[0  ,0 , Ws, 0 , 0 , 0],[(-

Vinf*np.sin(3.14*delta/180))/(2*H*XT), (-E_q*Vinf*np.cos(3.14*delta/180))/(2*H*XT) , -

DX*Ws/(2*H) , 0 , (E_q*Vinf*dXTCSC*np.sin(3.14*delta/180))/(2*H*XT*XT) ,0],[-

KA*K6/TA  , -KA*K5/TA  ,0 , -1/TA  ,0  

,0],[(KP*T1*Vinf*np.sin(3.14*delta/180))/(2*H*T2*XT) , 

(KP*T1*E_q*Vinf*np.cos(3.14*delta/180))/(2*H*T2*XT) ,  (-

KP/T2)+(KP*T1*DX*Ws)/(2*H*T2) ,  0 ,  (-1/T2)+(-

KP*T1*E_q*Vinf*dXTCSC*np.sin(3.14*delta/180))/(2*H*T2*XT*XT) ,0],[ 0, 0 ,0 ,0 ,-

1/TCSC ,-1/TCSC]] 

 #EIGEN VALUES OF A_TCSC# 

eig_val2=linalg.eigvals(A_tcsc) 

print("eig_val2=",eig_val2) 

 #INPUT MATRIX B_TCSC# 

B_tcsc=[[0 ,0],[0 ,0],[1/(2*H), 0],[0 ,KA/TA],[-KP*T1/(2*H*T2), 0],[0,0]] 

 #OUTPUT MATRIX C_TCSC# 

C_tcsc=[0 ,0 ,1 ,0, 0,0 ] 

#TRANSITION MATRIX D_TCSC# 

D_tcsc=[0, 0] 

[NUM2,DEN2]=signal.ss2tf(A_tcsc,B_tcsc,C_tcsc,D_tcsc,1) 

lti1=signal.lti(NUM2,DEN2) 

t1,r1=signal.step(lti1,0,T) 

plt.plot(T,r,'r') 

plt.plot(T,r1,'b') 

# Set the x axis label of the current axis. 

plt.ylabel('VARIATION OF ROTOR ANGLE') 

# Set the y axis label of the current axis. 

plt.xlabel('TIME') 

plt.show() 


